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SUMMARY
What are the key topological features of connectivity critically relevant for generating the dynamics underly-
ing efficient cortical function? A candidate feature that has recently emerged is that the connectivity of the
mammalian cortex follows an exponential distance rule, which includes a small proportion of long-range
high-weight anatomical exceptions to this rule. Whole-brain modeling of large-scale human neuroimaging
data in 1,003 participants offers the unique opportunity to create two models, with and without long-range
exceptions, and explicitly study their functional consequences. We found that rare long-range exceptions
are crucial for significantly improving information processing. Furthermore, modeling in a simplified ring
architecture shows that this improvement is greatly enhanced by the turbulent regime found in empirical
neuroimaging data. Overall, the results provide strong empirical evidence for the immense functional benefits
of long-range exceptions combined with turbulence for information processing.
INTRODUCTION

In nature, complex dynamics of physical systems emerge from

the integration of the underlying dynamic parts into the whole.

In general, global integrated dynamics are shaped by the struc-

ture of the coupling between the parts, which in most cases are

simple short-range local interactions. In neuroscience, structural

investigations show that the brain is a particularly interesting

physical systemwheremuch of thewiring is local but with impor-

tant exceptions in long-range white-matter connections.1–9 In

fact, this apparent complexity has been shown by recent

research using massive tract-tracing studies to be surprisingly

simple: the anatomical architecture of the mammalian cortex

uses similar simple short-range wiring with an exponential

drop-off in strength over distance, commonly known as the

‘‘exponential distance rule’’ (EDR).10–12 Crucially, however, these

investigations have also demonstrated that on top of the EDR,

there are rare long-range exceptions (EDR+LR) that have a

non-random role in the specificity and non-homogeneity of the

cortical architecture.1,2 It is highly likely that these weight-
distance relations make brain architecture unique among known

physical systems.

However, importantly, the functional relevance of these long-

range exceptions to brain dynamics remains unresolved. It is

clearly impossible to selectively remove these long-range ex-

ceptions in animal experiments that could allow a disentangle-

ment of their functional role. Previous research has therefore

investigated in silico the structural consequences of manipu-

lating the topology of brain anatomy,13–15 and there have even

been some studies of their functional consequences.16,17 Frus-

tratingly specific information-processing capability offered by

the long-range exceptions remains unresolved.

Here, whole-brain models constructed according to the struc-

tural Bauplan of the brain and incorporating sophisticated local

coupling are fitted to the empirical data and shown to replicate

the global brain dynamics.18–20 This explicitly allows us to

change the underlying anatomical structural connectivity to be

either local EDR wiring or both local and long range (EDR+LR)

in order to uncover the functional role of the rare long-range

exceptions.
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The whole-brain model contains twomain ingredients, namely

anatomy and dynamics, which are used to accurately fit and

reproduce many aspects of empirical neuroimaging data,

including the functional connectivity (FC), FC dynamics, meta-

stability, and even clustered composition of FC. The source

code for these models is freely available and there is even The

Virtual Brain (https://www.thevirtualbrain.org/). As can be seen

from this code base, for estimating the anatomical structural

connectivity, excellent results can be obtained from diffusion

MRI (dMRI).21 For modeling local dynamics, initially complex

models of neural dynamics going from spiking neuronal cir-

cuits22 to dynamical mean field23 were used. More recently, a

more efficient and yet more simple, yet very effective, model

has been shown to be a mesoscopic system using the so-called

Stuart-Landau oscillators.24 As an example of the power of the

whole-brain models, the Hopf model is able to describe up to

80% of the resting-state FC. Still, there are some important

features of brain dynamics such as non-stationarity and non-

equilibrium that the current models are not yet able to capture.

However, this remains an active area of research.25

Oscillators have been used to model many physical systems,

going from the simplest linear, harmonic oscillator to non-linear

oscillators.26 Small perturbations to linear oscillators lead to

changes in oscillation amplitudes, whereas perturbations to

non-linear oscillators lead to self-regulating relaxation and a re-

turn to the same region in phase space. With an ordinary differ-

ential equation of a complex order parameter, the Stuart-Landau

model of a single oscillator provides the simplest non-linear

extension of a linear oscillator that mathematically describes

the onset of spontaneous oscillations (i.e., bifurcation from

fixed-point dynamics toward a limit cycle). This model has

been shown to be remarkably effective at modeling the meso-

scopic dynamics of brain regions, which contain combinations

of different noisy to oscillatory regimes.

In neuroscience, the whole-brain model using dMRI and Stu-

art-Landau oscillators is called the ‘‘Hopf whole-brain model’’

in honor of the German mathematician Eberhard Hopf, who

described the normal form of the Hopf bifurcation, which de-

scribes the behavior of a Stuart-Landau non-linear oscillating

system.27 In physics, a similar large-scale system of spatially

coupled oscillators has been shown to give rise to a wealth of

spatiotemporal patterns, ranging from regular laminar wave-

forms to highly turbulent dynamics. Interestingly, similar to these

findings in physics, the Hopf whole-brain model has recently

been used to capture the regularities of empirical neuroimaging

data exhibiting turbulent dynamics.28 Using a large, high-quality

state-of-the-art dataset of 1,003 Human Connectome Project

(HCP) participants, it was shown that human brain dynamics

exhibit turbulence by a power law similar to that shown by Kol-

mogorov in fluid dynamics. Equally, the results show turbulence

in the empirical data as formalized by Kuramoto in his studies of

coupled oscillators. Furthermore, building a whole-brain Hopf

model with Stuart-Landau coupled oscillators, it was demon-

strated that maximal turbulence and information processing

are found at the optimal working point of the model.

In terms of the physiology, the important principles for turbu-

lence in the brain, as already demonstrated,29 are not the kinetic

movement of fluids but the neural activity in terms of local syn-

chronization. This is the key insight of Kuramoto, who was able
2 Current Biology 31, 1–13, October 25, 2021
to demonstrate that oscillators with local synchronization can

lead to turbulence in a non-fluid context when coupled in the

right way.30 Even more, given that the brain can be described

by coupled oscillators, this closes the circle.

Here we investigated the functional consequences of having

EDR or EDR+LR anatomy in the Hopf whole-brain model fitted

to very large scale empirical neuroimaging data from 1,003 par-

ticipants in the HCP. First, we used dMRI tractographic data to

identify the relationship between connection weight (in tractog-

raphy referred to as ‘‘streamline density’’) and distance. As ex-

pected, we found that the empirical tractographic connectivity

data in the human cortex fit an EDR. Second, we identified rare

long-range exceptions corresponding to those long-range con-

nections with stronger weights than expected from the EDR.

Third, whole-brain modeling was used to investigate the func-

tional consequences of the EDR and EDR+LRmodels. We found

that the addition of the long-range exceptions leads to a signifi-

cant improvement to fitting the empirical neuroimaging data and,

more importantly, a very significant enhancement of information

processing, which we measured in four complementary ways.

Our first approach was to measure information processing by

characterizing the correlations between long-range pairs of re-

gions in Montreal Neurological Institute (MNI) space. We then

used three more sophisticated approaches that use the concept

of ‘‘brain vortex space,’’ defined as the local level of synchroni-

zation and thus similar but not identical to rotational vortices

found in fluid dynamics.

The discoveries of Kuramoto of linking oscillators and turbu-

lence motivated our use of the concept of brain vortex space,

which is exactly defined as the local level of synchronization.

This is thus similar but not identical to the rotational vortices

found in fluid dynamics. In this case, the brain vortex space is

the level of local synchronization capturing the level of rotation-

ality, whereas in fluid dynamics, the vortices are essentially

capturing the rotational kinetic energy. Thus, although not iden-

tical, the brain vortex space shares some similarities with the

vortex space used in fluid dynamics. Independent of semantic

analogy, the concept of local synchronization is fundamental

for capturing the information transmission across spacetime.

Indeed, based on this central concept, we define three different

measures, namely information cascade, susceptibility, and pre-

dictability (see Results and STAR Methods).

Finally, we investigated the role of turbulence for this signifi-

cant improvement in information processing. This can be studied

explicitly in the simplest possible ring structures of coupled Stu-

art-Landau oscillators with three different types of coupling:

nearest neighbor (NN), EDR, and EDR+LR. In this simpler model,

we were able to modulate the levels of turbulence by changing

the global coupling. We found that a low proportion of long-

range exceptions critically are important to significantly improve

the transmission of information across the system, i.e., the infor-

mation cascade in a turbulent regime.

Overall, we found that a brain architecture with rare long-range

exceptions plays a crucial role for enhancing information pro-

cessing. We showed the long-range exceptions are important

for building up resting-state networks and as such could add a

mechanistic underpinning for the recent systematic evidence

of the importance of long-range connectivity for cognition.31,32

The results demonstrate the functional benefits in terms of
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Figure 1. Using whole-brain modeling to

determine the functional importance of

recently discovered rare long-range excep-

tions

Massive tract-tracing studies in primates have

revealed the simple, yet powerful, economy of

anatomy as a cost-of-wiring principle of rare long-

range exceptions on top of an exponential dis-

tance rule. Whole-brain modeling provides a

unique opportunity to disentangle the functional

role of these long-range exceptions by testing

alternative hypotheses.

(A) First, human diffusion MRI (dMRI) was used to

fit the exponential distance rule (EDR) and extract

rare long-range exceptions on top of these

(EDR+LR). The two different anatomical hypothe-

ses are illustrated by the cartoon of two rings (EDR

in blue and EDR+LR in red).

(B) Second, we built two different whole-brain

models using these anatomical hypotheses to fit

the functional MRI data from 1,003 participants. At

the optimal working point, these Hopf models are

able to reproduce the empirical whole-brain dy-

namics that emerge from the local dynamics of

each brain region (described using a Stuart-

Landau oscillator) coupled through the two

different underlying anatomical hypotheses.

(C) We used the two sensitive measures of the FC

long-range and information cascade to assess the

functional advantages of the rare long-range

exceptions.
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improving the information cascade provided by the unique brain

architecture with the EDR and long-range exceptions exploiting

the turbulent-like regime of brain dynamics.

RESULTS

We hypothesized that adding the rare long-range exceptions to

the EDR crucially enhances information processing (as

measured by our four measures of long-range connectivity, in-

formation cascade, susceptibility, and predictability) over and

above having only the EDR as a wiring principle. Although it is

not possible to empirically remove them to test their functional

consequence, we were able to use whole-brain modeling fitted

to large-scale human neuroimaging data to explore their func-

tional relevance.

The overall strategy is described in Figure 1. First, we fitted an

EDR to human dMRI and extracted rare long-range exceptions

on top of these (EDR+LR). Figure 1A shows cartoons of the

two different anatomical models: the EDR model (blue) and the

EDR+LRmodel (red). Figure 1B shows howwe built two different

whole-brain models based on the two different anatomical

models to test the differential functional role of rare long-range

exceptions. We fitted both Hopf whole-brain models to the
Cu
functional MRI data from 1,003 partici-

pants. At the corresponding optimal

working point, the models were able to

reproduce the empirical whole-brain dy-

namics that emerge from the local dy-

namics of each brain region (described
using a Stuart-Landau oscillator) coupled through the two

different underlying anatomical hypotheses. As shown in Fig-

ure 1C, this framework allows us to test the functional conse-

quences between the two models by using two sensitive mea-

sures of long-range FC and information cascade (see below

and STAR Methods) to assess the functional advantages of the

rare long-range exceptions.

Extracting two underlying anatomical models to be
tested
The functional advantages of the rare long-range exceptions can

be investigated with whole-brain modeling using either EDR or

EDR+LR anatomical models. Figure 2A shows that the mamma-

lian cortex is well described by an architecture with long-range

exceptions on top of an EDR.11 The anatomical structural con-

nectivity of the human brain can be estimated using dMRI trac-

tography. We estimated empirical HCP dMRI tractography of

the human brain by estimating the streamline densities (i.e.,

connection weights) between the pairs of regions in the fine-

grained Schaefer parcellations (with 1,000 parcels) as a function

of the Euclidean distance between nodes (Figure 2B; STAR

Methods). For each region pair, we computed the Euclidean dis-

tance, r, in MNI space (Figure 2C) in order to access the spatial
rrent Biology 31, 1–13, October 25, 2021 3
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Figure 2. Extracting the EDR and EDR+LR

(A) Consistent tract-tracing studies in non-human

primates have shown that most of the underlying

brain connectivity follows the exponential decay

described by the EDR.11 Here is shown the his-

togram of interareal projection lengths for all

labeled neurons (n = 6,494,974), where the blue

line shows the exponential fit with a decay rate of

0.19 mm�1.

(B) In order to assess whether this EDR holds for

the human brain, we used the fine-grained

Schaefer parcellation with 1,000 parcels, here

shown as slices inMNI space and on the surface of

the HCP CIFTI (Connectivity Informatics Technol-

ogy Initiative) space.

(C) We computed the Euclidean distance, r, in MNI

space between pairs of regions. Here we show

two examples of the pairs with r = 8–10 mm (top,

black lines) and r = 160–162 mm (bottom, red

lines).

(D) We estimated the empirical HCP dMRI trac-

tography of the human brain, as shown by the

streamline densities between the pairs of regions

in the Schaefer parcellations as a function of the

Euclidian distance between the nodes. We found

that the EDR is a good approximation of the hu-

man structural anatomical connectivity as shown

by the green line showing the fitted EDR with an

optimal l = 0.18 mm�1 fitting the empirical dMRI

tractography (blue line). Equally, the remarkable

similarity can be appreciated by comparing the

two matrices showing the structural connectivity

matrices for the empirical dMRI tractography (left

subpanel) and the optimally fitted EDR connec-

tivity (right subpanel).

(E) However, our results also demonstrate that,

similar to non-primates, the anatomy is also

characterized by a small proportion (1.23%) of

long-range outliers of the EDR. We identify an

exception by computing the distribution for a given

distance and selecting those connections that are

3 standard deviations above the mean. Here, we

plot the relative percentage of long-range outliers

(for pairs at a given distance) as a function of that

distance. Note the increase in relative percentage,

especially for the longest-range connections.

(F) For these exceptions, we show relative

streamline densities (for the pairs at a given dis-

tance) as a function of distance. Note the general

tendency for an increase in the long-range

connections.

(G) We plot a rendering of the combined HCP tractography in MNI space.

(H) Left: a rendering on the human brain of the regions (in blue) as a degree of the matrix of the long-range EDR outliers overlaid with primary sensory regions (in

yellow, as indexed by the myelin ratio). Right: the normalized values for long-range EDR outliers (in blue) and sensory areas (in yellow) across regions, as well as

red circles showing the 14.9% overlap between them.
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information required to investigate the rules underlying coupled

connectivity.

Figure 2D shows the fitting ofweights of connections as a func-

tion of distance, r, by an exponential decay function (with the

shadow showing the standard deviation; see STAR Methods).

Thismeans that the human structural anatomical connectivity ex-

hibits a fitted EDR as reflected by the green line with an optimal

ls = 0:18 mm�1 fitting the empirical mean dMRI connectivity ma-

trix acrossparticipants (blue line). This is lower than the value ls =

0:78 mm�1 found in mice and similar to the value ls = 0:19 mm�1
4 Current Biology 31, 1–13, October 25, 2021
found in non-human primates.11,12 Unlike the results in mice and

non-human primates, the estimate found here is based on dMRI

tractography and may be overestimating the ls, which is likely to

be smaller. In fact, fitting the functional neuroimaging datawith ls
as a free parameter yielded values lower than the one estimated

here from the structural data.28Nevertheless, for consistency,we

use the latter here. The figure also shows the remarkable similar-

ity between the two matrices representing the empirical dMRI

structural connectivity matrix (left subpanel) and the optimally

fitted EDR connectivity (right subpanel).
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Although dMRI is not ideal for estimating precise anatomical

connections,33 we designed an algorithm to identify rare long-

range outliers to the EDR, i.e., connections that are much stron-

ger than average as derived from the EDR. This algorithm first

computes the distribution of weight connections at a given dis-

tance, r, in the average dMRI connectivity matrix. We then

selected only those connection pairs that are three standard de-

viations above the mean weighting of connection at that given

distance, r.

We found that, similar to the cortical anatomy of non-human

primates and rodents,10–12 human structural anatomy is charac-

terizedbyasmall proportion (1.23%)of rare long-rangeoutliers of

the EDR. To further specify the long-range exceptions over and

above the standard deviation shown in Figure 2D, we are explic-

itly showing the relative percentage exceptions of long-range

connections (for pairs at agivendistance) asa functionof that dis-

tance in Figure 2E. As can be clearly seen, long-range outliers in-

crease in relative percentage with increasing distances.

Furthermore, Figure 2F shows the relative streamline density

as a function of distance for the pairs of exceptions at a given dis-

tance. Note the general trend for an increase of relative stream-

line density in the long-range connections, again suggesting that

the EDR outliers that are expected to play a predominant role in

shaping dynamics are more prevalent at longer distances.

For visualization, Figure 2G shows a rendering of the com-

bined HCP tractography in MNI space (without the cerebellum

and brainstem). Crucially, the edge-complete connectome can

be compared with the relative simplicity of the spatial location

of the long-range outliers shown in Figure 2H. Here, we

computed the regions with long-range exceptions (larger than

40 mm, accounting for 78% of all) where the regions were

computed as the degree of the long-range exception matrix.

We render the pairs of regions (in blue) on various views of the

human brain overlaid with the primary sensory regions (shown

in yellow). The right panel shows the normalized values for

each across the 1,000 regions as well as red circles showing

the small 14.9% overlap between them. This demonstrates

that the long-range exceptions are mainly found in the higher as-

sociation cortex, which has been shown by many studies to be

involved in higher brain function.34

Rare long-range EDR outliers in human brain
architecture improve information processing
We aimed to investigate the hypothesis that enhanced informa-

tion processing is obtained by adding rare long-range excep-

tions to EDR using three measures of information transmission

in brain vortex space and one measure of long-range correlation

in MNI space. We used whole-brain models because they offer

the advantage that they can be systematically altered to fit the

empirical data, making it possible to test different hypotheses.21

As shown in the previous section, from the empirical anatom-

ical data, we extracted two connectivity matrices, CEDR
np , with the

EDR, and with long-range connections (larger than 40 mm) on

top (EDR+LR), CEDR+ LR
np (see STAR Methods). We used these

for the anatomical connectivity matrices in two separate Hopf

whole-brain models fitting empirical functional neuroimaging

from 1,003 human subjects (see STAR Methods).

First, in order to show the appropriateness of our whole-brain

model for hypothesis testing, we show the results of fitting to the
empirical data. Figure 3A shows the evolution of the error of the

FC fitting to the empirical data for both models as a function of

the global coupling strength, G. The error of the FC fitting is given

by the square root of the difference between the simulated and

empirical FCmatrices.We found for eachmodel an optimal work-

ingpointwithGEDR=1.55andGEDR+LR=1.3, bothwithaverygood

level of fit to the empirical data.We used these values as the basis

of the following investigations to study our two models.

Figure 3B shows boxplots of the errors of the FC fitting for the

two models at the corresponding optimal working point. As hy-

pothesized, the EDR+LR with the long-range connections per-

forms significantly better in fitting the empirical data (p < 0.001,

Wilcoxon rank sum). This emphasizes the important role of the

long-range connections for brain function.

Importantly, as shown in the boxplots of Figure 3C, the two

models are able to fit the level of turbulence in the empirical

data (compare the empirical, EDR+LR, and EDRmodels). Turbu-

lence is measured as the variability across time and space of the

local synchronization level (see STARMethods). In order to show

the significance of turbulence in both empirical data andmodels,

we constructed and computed turbulence for surrogate data

shuffled while maintaining the spatiotemporal characteristics of

the empirical data.35 The levels of turbulence of empirical data

and models are significantly different (p < 0.001, Wilcoxon rank

sum) from surrogate data. This shows that the EDR alone is

enough to fit turbulence, which is not surprising given that other

diffusive systems (i.e., with local coupling) such as fluids can also

exhibit turbulence.

Having shown that the whole-brain model is able to fit the

empirical data, Figures 3D–3H show the key experimental find-

ings of how long-range exceptions enhance very specific aspects

of information processing, namely information cascade, suscep-

tibility, predictability, and long-range connectivity (see STAR

Methods). Given that information transmission across space

and time is mediated by the local level of synchronization in brain

vortex space, the first three measures are in this space. We also

use a complementary measure of information processing given

by themoreconventional long-range functional correlation,which

characterizes the transmission of information over MNI space.

More specifically, our first measure of the information cascade

wasmotivated by the theory of turbulence,which recent research

has found in human brain resting-state dynamics.28,29 In partic-

ular, we investigated the ‘‘turbulent information cascade,’’ which

measures the hierarchical transfer of information across scales.

Briefly, turbulence can be defined by local levels of synchroniza-

tion at different spatial scales, l, by means of the local order

Kuramotoparameter,Rl (seeSTARMethods). Thismeasure cap-

tures what we here call ‘‘brain vortex space,’’ Rl, over time,

inspired by the rotational vortices found in fluid dynamics but of

course not identical. The information cascade flow is the predict-

ability of a given brain vortex space at scale l from the brain vor-

tex space at scale l� Dl (whereDl is the discretization of scale).

In other words, themeasure captures information transfer across

scales through local synchronization in brain vortex space.

Finally, we define the information cascade as the average of the

information cascade flow across different scales (see STAR

Methods). In other words, enhancing the information cascade is

a signature of enhanced information processing in terms of trans-

ferring information across spacetime. Note that this measure
Current Biology 31, 1–13, October 25, 2021 5
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Figure 3. Whole-brainmodeling shows how

rare long-range exceptions in the human

brain improve information processing

As shown in Figure 2, we extracted two matrices

with the EDR (blue) and EDR+LR (red) from the

empirical human anatomical data. These two

coupling matrices were used in a Hopf whole-

brain model of Stuart-Landau oscillators fitting the

empirical functional neuroimaging, and we chose

the respective model optimum. We analyzed the

information-processing ability of these two

different architectures.

(A) The error of the FC fitting to the empirical data

for both models as a function of the global

coupling strength, G, is shown. We use the

respective minima (blue line, GEDR = 1.55; red line,

GEDR+LR = 1.3) as the basis of the following

investigations.

(B) Boxplots of the errors of the FC fitting for the

two models are shown. The EDR+LR with the

long-range connections performs significantly

better (p < 0.001, Wilcoxon rank sum). This

shows the important role of the rare long-range

exceptions.

(C) The amplitude turbulence for the EDR+LR and

EDR models is both similar to the empirical (Emp)

data—but not the surrogate (Surr) data. This sug-

gests that the EDR+LR model is not affecting the

simplest measure of turbulence data but, as we

show in Figure 4 (see text), turbulence does affect

the role of LR exceptions in information process-

ing.

(D) More specifically, we investigated the role of

LR exceptions in information processing by

measuring the information cascade (see STAR

Methods). Top: confirmation of the significant role

(p < 0.001, Wilcoxon rank sum) for LR exceptions

in increasing the information cascade (compare

the EDR+LR with EDR boxplots). The information

cascade is the integration of information cascade

flow across scales (see STAR Methods). Bottom:

how the EDR+LRmodel is significantly higher than

the EDR model in terms of information cascade

flow as a function of the scales in brain vortex

space is shown (compare the red line for the

EDR+LR and blue line for EDR models).

(E) Boxplots of the mean values of the FC long-range (involving pairs with distances over 40 mm) for the two models across 100 trials are shown. There is a

significant increase for the EDR+LR model (p < 0.001, Wilcoxon rank sum), which shows the important role of long-range exceptions.

(F) Using whole-brain modeling allows measurement of the susceptibility (the reaction of the model to external perturbation; see STAR Methods) of the two

models and again the EDR+LR model outperforms the EDR model.

(G)We alsomeasured the predictability in brain vortex space for n steps in the future (shown on the x axis). Again, the EDR+LRmodel outperforms the EDRmodel.

(H) The seven subpanels show brain renderings of the seven Yeo resting-state networks with the corresponding boxplots of the FC fitting of the two models

(smaller values are better). Again, the EDR+LR model outperforms the EDRmodel and is able to better fit the visual, saliency, control network (CON), and default

mode network (DMN). This suggests that the rare long-range exceptions are fundamental for the generation of the classic resting-state networks. The boxplots of

the figure use the standardMATLAB convention, where the central mark indicates themedian, whereas the bottom and top edges of the box indicate the 25th and

75th percentiles, respectively. The whiskers extend to themost extreme data points not considered outliers, which are plotted individually using a red ‘‘+’’ symbol.

We have added three black asterisks where the level of significance is higher than p < 0.001 (Wilcoxon, rank sum).
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captures the transmission of information asmediated by the local

level of synchronization at different spatial scales.

As we hypothesized, the top panel of Figure 3D shows that the

human EDR+LR model significantly increases the information

cascade (p < 0.001, Wilcoxon rank sum) compared to the EDR

model. This is shown in more detail in the bottom panel plotting

the information cascade flow for the two models as a function of

the spatial scale l. Again, as hypothesized, we found an increase
6 Current Biology 31, 1–13, October 25, 2021
for the EDR+LR model (red line) compared with EDR models

(blue line) as a function of the scales in brain vortex space. These

results demonstrate the functional importance of long-range

connections for information processing.

Using whole-brain modeling also allowed us to test the impor-

tance of structural long-range exceptions for enhancing other

information-processing measures not in brain vortex space

(and thus directly associated with turbulence). Specifically, we
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investigated the functional long-range connectivity (FC long-

range), which is a measure of the average FC between pairs of

brain regions over 40 mm apart. Figure 3E shows a significant in-

crease for the FC long-range for the EDR+LR model (p < 0.001,

Wilcoxon rank sum). The increase in the FC long-range for the

EDR+LR model is concomitant with a smaller error in fitting to

the full functional data (shown in Figure 3B).

Back in brain vortex space, yet anothermeasure of information

processing comes from measuring the susceptibility of the

whole-brain model, which describes the reactivity and sensitivity

of a system to external perturbations (see STAR Methods). Sys-

tems with high susceptibility are more prone to encode external

inputs and therefore important for cognition. As can be seen from

Figure 3F, again the long-range connection model outperforms

the simple EDR model. Thus, the long-range connections add

sensitivity to external stimulation, potentially important for

task-related information processing (see below).

Still in brain vortex space, we tested the predictability measure

of information processing (see STAR Methods) and found that

the EDR+LRmodel outperforms the EDRmodel in terms of being

better able to predict the future state of the brain (Figure 3G).

Finally, we were interested in providing potential evidence for

the involvement of the long-range exceptions in the generation

of resting-state networks. Figure 3H shows the level of fitting of

both models with the seven Yeo resting-state networks. As can

be seen, both models provide good fits to the resting-state net-

works, but the EDR+LR model is significantly better at fitting the

visual, saliency, control network (CON), anddefaultmodenetwork

(DMN) (all p < 0.001, Wilcoxon rank sum). This important result

suggests that whereas the EDR could well be the underlying

anatomical skeletonenabling resting-state networks, theEDR+LR

model enhances the generation of the resting-state networks.

Overall, these findings rigorously confirm our hypothesis that

rare long-range exceptions on top of the simple EDR wiring of

the human brain significantly enhance information processing

(as characterized by four independent measures).

The role of turbulence for the ability of long-range
exceptions to enhance information processing
Given that turbulence is present in the empirical brain dynamics

and the two models, we investigated whether this could be facil-

itating the enhancement of information processing by rare long-

range exceptions. In order to manipulate the level of turbulence,

we turned to the simplest model system, namely that of an EDR

ring architecture with and without LR.

Previous research has shown that creating a network with

small-world properties such as the EDR+LR enhances the struc-

tural topological properties.36 Changing the topological brain

anatomy has been studied in quite some detail,13–15 whereas

functional consequences of manipulating the underlying archi-

tecture have been studied less.16,17 However, the role of turbu-

lence for information processing in architectures with rare

long-range exceptions has not been studied.

As shown in Figure 4A, we constructed three different types of

ring architectures: NN (black ring), EDR (blue ring), and rare long

range (EDR+LR; red ring). These formed the basis for the three

models of coupledStuart-Landauoscillators,wherewemeasured

turbulence, averagedFCat long-rangedistances (FC long-range),

and information cascade.
Figures 4B and 4C show the role of turbulent fluctuations in the

impact of long-range connections on information processing.

Figure 4B shows the effect of low levels of turbulent fluctuations

with a low global coupling, G = 0.01, in the three architectures. As

can be seen from the boxplots in the left panel, there are low

levels of turbulent fluctuations for all three models, and compar-

ativelymodest effects of enhancing the effects of rare long-range

exceptions on measures of the FC long-range and information

cascade (middle and right panels).

In contrast, Figure 4C shows that increasing the global

coupling to G = 0.65 increases turbulent fluctuation levels in all

models. Under these conditions, the effect of rare long-range ex-

ceptions is significantly amplified as shown by the measures for

both the FC long-range (middle panel) and information cascade

(right panel) (both p < 0.001, Wilcoxon rank sum). These results

confirm our hypothesis that turbulence provides the underlying

functional regime allowing for the increase in information pro-

cessing found in the EDR+LR model.

Furthermore, in Figure S1, we investigated the dependence of

these results as a function of global coupling and the probability

of long-range exceptions in the model. Figure S1A shows these

measures as a function of global coupling, G, in all three archi-

tectures. For the EDR+LR model, we used p = 0.05 as the prob-

ability of long-range exceptions and found the largest effect was

on the FC long-range and information cascade (compare the

non-overlapping red curves with the blue and gray curves for

all values of G). This means that the level of long-range excep-

tions has a strong impact on information processing as revealed

by the increase of functional correlations in the long-range con-

nections and in the transmission of information reflected by the

information cascade. It is interesting to note that in contrast to

the other models, the NN model does not increase with G for

the measures of the FC long-range and information cascade.

In contrast, the level of turbulence increases with G in all three

architectures.

Figure S1B shows the effect of rewiring of long-range excep-

tions. For the optimal global coupling of the EDR+LR model, G =

0.65, we plot the same three measures for all three architectures

but now as a function of the probability of rewiring long-range ex-

ceptions. We observe the same effect as when systematically

varying G and p = 0.05 is close to optimal (see the red curve in

the middle panel of Figure S1B).

Further insight on the low and high turbulent fluctuation re-

gimes is provided by Figure S1C. Here, we investigated the

EDR+LR model (with rewiring of long-range exceptions, p =

0.05) in the low (G = 0.01) and high (G = 0.65) turbulent fluctuation

regimes. The first column shows snapshots of phases associ-

ated with the low (top panel) and high (bottom panel) turbulent

fluctuation regimes. As can be seen, phases are more clearly

clustered in the high compared to low regime, reflecting local

cluster synchronization resembling turbulent vortices. The sec-

ond column shows the distribution of the FC long-range for the

low (top panel) and high turbulent fluctuation regimes (bottom

panel); this reveals a strong increase of the FC long-range across

all pairs in the high compared to low regime.

Finally, we were able to show explicitly how information trans-

mission across brain vortex space is influenced by long-range

coupling. Figure S1D shows the information cascade flow (i.e.,

a measure across scales), rather than the information cascade
Current Biology 31, 1–13, October 25, 2021 7
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Figure 4. Using a simple ring structure to

demonstrate the improvement in informa-

tion processing by long-range exceptions

is due to the underlying turbulence

(A) We created three distinct ring architectures of

coupling: nearest neighbor (NN; black ring), EDR

(blue ring), and EDR+LR (red ring). In each archi-

tecture, we used Stuart-Landau oscillators to

study the degree of turbulence, functional con-

nectivity in long-range distances (FC long-range),

and information cascade.

(B) We analyzed the role of turbulence by varying

the global coupling (G; see Results, STAR

Methods, and Figure S1) and how turbulence is

amplifying the effects of the long-rare exceptions

on the FC long-range and information cascade.

For a low-level turbulence with a low global

coupling, G = 0.01, the figure shows three sub-

panels with a row of boxplots for the measures for

the three ring architectures. As can be seen, at this

low level of turbulence regime, the effect of the

long-range exceptions is only moderate.

(C) However, when we increase the level of tur-

bulence of the EDR+LR model (G = 0.65), the

effect of the long-range exceptions is highly sig-

nificant for both the FC long-range (middle panel)

and information cascade (right panel). This shows

clearly that turbulence combined with the specific

EDR+LR architecture plays a significant role in

enhancing the information cascade and informa-

tion processing in general.

See also Figure S1.
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(i.e., the average across scales) as shown in Figure 3. At optimal

global coupling, there is a strong effect of long-range connectiv-

ity (compare the red line, p = 0.05 with the blue line, p = 0). The

baseline (gray line) is added as a reference and corresponds to

the information cascade of surrogates of the same time series

where the time ordering of phases was shuffled (100 repeats).

We show the normalized information cascade flow (normalized

with respect to the baseline in the bottom plot), which shows

exactly the same effect. Note in the normalized version the flat-

tening linear decay of information transfer for the model without

long-range connections. In contrast, the EDR+LR model shows

high information across all scales that decays slowly, explicitly

reflecting the information cascade.

DISCUSSION

The brain appears to be unique in terms of its complex architec-

ture spanning multiple scales.37 Unlike other known physical

systems, where the elements communicate with nearest and

close neighboring elements (such as, for example, fluids or
8 Current Biology 31, 1–13, October 25, 2021
the heart), the brain uniquely possesses

distant connections including a small

contingent of long-range anatomical out-

liers, which—given their crucial role—we

hypothesize have a significant role for

enhancing information processing, pre-

sumably under strong evolutionary pres-

sure. This hypothesis is difficult to test
given that it is neigh impossible to isolate the long-range excep-

tions in animal experiments.

However, whole-brain modeling of empirical data offers a

unique opportunity to test this hypothesis by creating models

with and without rare long-range exceptions. A good definition

of information processing in the brain is not universally agreed

upon, but here we characterize different aspects of information

processing by providing four different complementary mea-

sures. One simple way is to measure information processing

by characterizing the correlations between long-range pairs of

regions in MNI space, where a higher degree of correlation at

long-range distance is indicative of transmission of information

across space. A more sophisticated approach to fully charac-

terize information transmission over space and time uses the

concept of brain vortex space, defined as the local level of syn-

chronization, and thus is similar but not identical to rotational

vortices found in fluid dynamics. Note that the key idea is that

the level of local synchronization (captured by the local

Kuramoto parameter) is essential to the transmission of informa-

tion across spacetime. Specifically, we used three different
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complementary measures measuring the information cascade,

susceptibility, and predictability.

These measures allowed us to confirm our hypothesis that the

long-range exceptions confer a significant improvement in infor-

mation processing using a large empirical neuroimaging dataset

of 1,003 human subjects. Specifically, we contrasted two whole-

brain models, EDR, and EDR+LR. In terms of function, the latter

better fitted the functional empirical data and in addition showed

a significant increase in information processing as measured by

the specific measures of the FC long-range and information

cascade. Importantly, the EDR+LR model was also better able

to fit the emergence of the classical resting-state networks,

providing potentially a link to cognition.

Our quantification of information processing was inspired by

the pioneering work of Yoshiki Kuramoto, who demonstrated

turbulence using coupled oscillators to describe the rich vari-

ability of local synchronization.30 As such, these measures do

not depend on turbulence per se to measure information pro-

cessing. We were, however, interested to see whether a turbu-

lent regime enhances information processing through the rare

long-range exceptions.

To this end, we studied models using the simplest possible

ring architectures. We were able to demonstrate that all three

models with different ring architectures of coupled oscillators

(with NN, EDR, and EDR+LR) are capable of supporting a turbu-

lent fluctuation regime but are not all equally efficient for informa-

tion transfer. By varying the level of turbulence, we were able to

show that for high levels of turbulence the EDR+LRmodel signif-

icantly amplifies information processing as reflected in a

concomitant significant increase of the FC long-range and infor-

mation cascade (defined as a measure of information flow

providing predictability across scales). These results demon-

strate the potentially immense functional benefits for information

processing in the turbulent fluctuation regime sustained by a

brain architecture with rare long-range exceptions.

Beyond the demonstration that rare long-range exceptions

amplify information processing due to the underlying turbulence,

we note two important complementary facts. First, as shown by

Andrey Kolmogorov, turbulence in fluid dynamics provides the

basis for highly efficient energy transmission.Onanabstract level,

information transfer is analogous to energy transfer, and in fact

mathematical research has shown the close links between prop-

agation of disturbances and the transmission of information.38,39

Kolmogorov also showed that turbulence is characterized by po-

wer laws revealing a cascade of energy and information40,41 (see

the excellent review in Frisch42).

Second, we have recently shown that human brain dynamics

are turbulent in the sense that they show similar power laws to

Kolmogorov’s ‘‘structure-functions,’’ corresponding to FC as a

function of distance. In other words, the existence of a power

law for human brain dynamics is not only evidence of turbulence

but also evidence for the efficient transmission of correlations,

i.e., transmission of information across spacetime. Strength-

ening this line of evidence, we also used the complementary

Kuramoto framework, showing rich variability of the local level

of synchronization across spacetime in the empirical brain

imaging data. Equally, fitting the empirical data with a whole-

brain Hopf model based on Stuart-Landau oscillators, we

were able to causally show that at the optimal working point,
turbulence is maximal and associated with efficient information

transmission.28

Beyond the fundamental properties of information processing,

it is of interest to note that the theoretical results from the model

with the ring architecture show that a small proportion of long-

range connections improves the information cascade (indepen-

dent of their spatial location). However, the empirical results

using a model with brain architecture clearly show that these

long-range exceptions are not spatially random but closely

linked to the emergence of functionally important resting-state

networks. Given that these networks have been shown to play

a key role in task-based processing,43–45 we speculate that

this suggests that evolution has improved on the basic EDR by

refining long-range exceptions, thereby improving brain func-

tion, most notably its ability to perform certain behaviors, thereby

optimizing survival. This will need to be further explored in cross-

species investigations.

Researchhas investigated thehierarchical organizationof brain

structure and function,7,46–48 which has demonstrated a common

networkavailable for theorchestrationof taskand rest.28Previous

researchhasdemonstrated that the turbulent coreof brain activity

is largely overlapping with brain regions known to be involved in

lower-level sensory processing.28 We therefore hypothesized

that the anatomical basis of this orchestration could be well

served by the long-range outliers, which effectively are able to

control brain activity in the turbulent core sustained by the under-

lyingEDR.Anobviousnext stepwould thereforebe to studya task

in a large empirical dataset, a challenging prospect given the dif-

ficulty at the required granularity for whole-brain models to cap-

ture the dynamical complexity specific to a given task.

Structural analysis of the cortical network has emphasized its

spatial embedding, showing that weight and distance of connec-

tions are tightly intertwined. Connection weights span over five

orders of magnitude, and the action of the EDR means that the

average connection weight declines exponentially with dis-

tance.11 A corollary of the decline in weight is that neighboring

areas show 100% connectivity with connection densities falling

to very low levels with distance. These considerations suggest

that long-range connections confer a high degree of binary spec-

ificity to the cortical network, which is amply confirmed by statis-

tical analysis.1 Further, this analysis shows that long-range con-

nections carry precise signatures that ensure an important role of

globalization to a small group of areas. An intriguing finding of the

present study is that theweight values of long-range connections

appear to play a decisive role, given the marked differences be-

tween the EDR and EDR+LR models in supporting the turbu-

lent-like dynamics of information processing.

The present study provides a potential framework for explain-

ing the relatively fast speed of computations needed for survival

of the individual and species, which requires the fast interaction

between feedforward and feedback brain connections. Given

the extraordinarily slow average transmission delay between

neurons, typically on the order of 40 ms between neurons, it

has long been a conundrumhow the brain can quickly distinguish

between different categories of stimuli.49 Take, for example, neu-

roimaging studies usingmagnetoencephalography (MEG),which

have shown activity around 130–170ms in the fusiform face area

(FFA) when faces are presented.50 This rapid processing is likely

potentiated by scale-free network processing in the turbulent
Current Biology 31, 1–13, October 25, 2021 9
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core in the sensory regions andcould potentially beapurely feed-

forward phenomenon. Crucially, however, human neuroimaging

experiments have shown that the feedback provided by the

long-range exceptions must play a key role in directing the flow

of information.51,52 As an example, MEG studies of infant and

adult faces have shown activity in the FFA for both stimuli but

with simultaneous activity in the orbitofrontal cortex (OFC) at

around 130 ms only for the infant faces.52 Interestingly, even

small deviations from the infant face template, such as cleft lip,

lead to much diminished activity in the OFC.53 This ‘‘parental in-

stinct’’ is found in even non-parents and clearly plays a role in di-

recting attention to the special category of infants, presumably to

ensure that we provide the necessary caregiving, even when we

are not the parents.54 The long-range feedback from the OFC,

presumably via the inferior longitudinal fasciculus, is controlling

the rapid information-processing flow, prioritizing infant

faces52,53 and sounds55 over other less important stimuli.

The study here relied on human brain neuroimaging, which is a

relatively coarse and slowmethod. In other words, the space and

timescales analyzed here are limited to the order of millimeters

and seconds, respectively. Complementary to this approach, it

wouldbeof considerable interest to study theBauplanof thebrain

at a cellular level or circuit level. It is well known that cell-to-cell

(rather than region-to-region or even voxel-to-voxel) interactions

on a very fine spatial scale can influence the dynamics of the brain

even on relatively long timescales (seconds) relevant for the

dynamical measures considered here.56,57 Progress has been

made at finer scales, as shown by the discovery of the signature

of turbulence at the circuit level in the rodent hippocampus.29

The crucial functional role playedby the rare long-range excep-

tions under a turbulent regime has important implications for the

hierarchical organization of brain processing. One function of

the EDR is that it confers a core-periphery structure in the cortex,

where the core is largely centered on theprefrontal cortex.2,11 The

high-efficiency cortical core has been speculated to provide the

structural underpinnings of the global workspace hypothesis,58,59

which proposes that recurrent processing in the core allows

amplification and globalization of conscious states.2,47,60 These

results also provide important underpinnings for other theories

of consciousness such as the integrated information theory

(IIT)61 and the temporo-spatial theory of consciousness (TTC),62

given that the turbulent-like regime promotes the efficient infor-

mation cascade needed for spatiotemporal integration. A better

and more detailed investigation of the role of particular EDR out-

liers is expected to give an improved understanding of the link be-

tween structure and higher cognitive function. Furthermore,

because the cortical core as defined by the EDR is found across

species,10–12,63 the exploration of its involvement in turbulence

across species would lead to a better understanding of compar-

ative cognitive function.

The shaping of functional activity by a fixed anatomical struc-

ture is a conundrum that brings to mind Thomas Aquinas’s

famous dictum: ‘‘Quidquid recipitur ad modum recipientis recip-

itur,’’ i.e., the container (or recipient) shapes the content. It has

been proposed that the flexibility of brain function associated

with the rich palette of behaviors is linked to changeable connec-

tivity through, for example, neuromodulation.64,65 This ‘‘effective

connectivity’’ is known also to change with brain states during

wakefulness, as well as in light and deep sleep. Thus, it would
10 Current Biology 31, 1–13, October 25, 2021
be of considerable interest to investigate how the information

cascade changes in different brain states.

In addition, we hypothesize that turbulence, the information

cascade, and especially the lack of control of these may play a

central role in neuropsychiatric disorders. The present frame-

work would lend itself well to causally describe the emotional

and information-processing changes found in neuropsychiatric

disorders andmay provide a novel way to find sensitive and spe-

cific biomarkers.

These findings also pose a question regarding the role of rare

long-range exceptions across species. Future research could

investigate the causal link between the underlying brain architec-

ture of different species, dynamical working point, turbulence,

information cascade, and behavioral complexity. Ultimately,

this could help cast new light on the deep question of what

makes us human.
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G., Leslie, A., Simmons, A., Murphy, D.G., and Catani, M. (2018).

Frontoparietal tracts linked to lateralized hand preference and manual

specialization. Cereb. Cortex 28, 2482–2494.
Current Biology 31, 1–13, October 25, 2021 11

http://refhub.elsevier.com/S0960-9822(21)01054-X/sref1
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref1
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref1
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref1
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref2
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref2
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref2
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref3
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref3
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref4
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref5
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref5
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref5
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref6
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref6
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref6
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref6
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref7
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref7
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref8
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref8
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref8
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref9
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref9
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref9
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref10
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref10
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref10
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref10
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref10
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref10
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref10
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref11
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref11
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref11
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref11
https://doi.org/10.1101/2020.02.28.969824
https://doi.org/10.1101/2020.02.28.969824
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref13
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref13
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref13
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref14
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref14
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref14
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref15
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref15
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref15
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref16
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref16
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref16
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref17
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref17
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref17
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref18
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref18
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref19
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref19
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref19
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref20
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref20
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref20
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref21
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref21
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref22
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref22
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref23
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref23
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref23
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref23
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref24
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref24
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref24
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref25
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref25
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref25
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref26
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref26
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref27
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref27
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref27
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref27
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref27
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref28
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref28
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref29
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref29
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref29
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref30
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref30
https://doi.org/10.1101/2020.04.22.20075127
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref32
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref32
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref32
http://refhub.elsevier.com/S0960-9822(21)01054-X/sref32


ll

Please cite this article in press as: Deco et al., Rare long-range cortical connections enhance human information processing, Current Biology (2021),
https://doi.org/10.1016/j.cub.2021.07.064

Article
33. Donahue, C.J., Sotiropoulos, S.N., Jbabdi, S., Hernandez-Fernandez, M.,

Behrens, T.E., Dyrby, T.B., Coalson, T., Kennedy, H., Knoblauch, K., Van

Essen, D.C., and Glasser, M.F. (2016). Using diffusion tractography to pre-

dict cortical connection strength and distance: a quantitative comparison

with tracers in the monkey. J. Neurosci. 36, 6758–6770.

34. Buckner, R.L., and Krienen, F.M. (2013). The evolution of distributed asso-

ciation networks in the human brain. Trends Cogn. Sci. 17, 648–665.

35. Kantz, H., and Schreiber, T. (1997). Nonlinear Time Series Analysis

(Cambridge University Press).

36. Watts, D.J., and Strogatz, S.H. (1998). Collective dynamics of ‘small-

world’ networks. Nature 393, 440–442.

37. Changeux, J.P., Goulas, A., and Hilgetag, C.C. (2021). A connectomic hy-

pothesis for the hominization of the brain. Cereb. Cortex 31, 2425–2449.

38. Cross, M.C., and Hohenberg, P.C. (1993). Pattern formation outside of

equilibrium. Rev. Mod. Phys. 65, 851–1112.

39. Oono, Y., and Yeung, C. (1987). A cell dynamical system model of chem-

ical turbulence. J. Stat. Phys. 48, 593–644.

40. Kolmogorov, A.N. (1941). The local structure of turbulence in incompress-

ible viscous fluid for very large Reynolds numbers. Proc. U.S.S.R. Acad.

Sci. (Atmos. Ocean. Phys.) 30, 299–303.

41. Kolmogorov, A.N. (1941). Dissipation of energy in locally isotropic turbu-

lence. Proc. U.S.S.R. Acad. Sci. (Atmos. Ocean. Phys.) 32, 16–18.

42. Frisch, U. (1995). Turbulence: The Legacy of A. N. Kolmogorov

(Cambridge University Press).

43. Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E.,

Filippini, N., Watkins, K.E., Toro, R., Laird, A.R., and Beckmann, C.F.

(2009). Correspondence of the brain’s functional architecture during acti-

vation and rest. Proc. Natl. Acad. Sci. USA 106, 13040–13045.

44. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A.,

and Shulman, G.L. (2001). A default mode of brain function. Proc. Natl.

Acad. Sci. USA 98, 676–682.

45. Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., Scheltens, P., Stam, C.J.,

Smith, S.M., and Beckmann, C.F. (2006). Consistent resting-state net-

works across healthy subjects. Proc. Natl. Acad. Sci. USA 103, 13848–

13853.

46. Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg,

J.M., Langs, G., Bezgin, G., Eickhoff, S.B., Castellanos, F.X., Petrides,

M., et al. (2016). Situating the default-mode network along a principal

gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. USA

113, 12574–12579.

47. Deco, G., Vidaurre, D., and Kringelbach, M.L. (2021). Revisiting the global

workspace orchestrating the hierarchical organization of the human brain.

Nat. Hum. Behav. 5, 497–511.

48. Vezoli, J., Magrou, L., Goebel, R., Wang, X.-J., Knoblauch, K., Vinck, M.,

and Kennedy, H. (2021). Cortical hierarchy, dual counterstream architec-

ture and the importance of top-down generative networks. Neuroimage

225, 117479.

49. Thorpe, S., Fize, D., and Marlot, C. (1996). Speed of processing in the hu-

man visual system. Nature 381, 520–522.

50. Kanwisher, N., McDermott, J., and Chun, M.M. (1997). The fusiform face

area: a module in human extrastriate cortex specialized for face percep-

tion. J. Neurosci. 17, 4302–4311.

51. Bar, M., Kassam, K.S., Ghuman, A.S., Boshyan, J., Schmid, A.M., Dale,

A.M., H€am€al€ainen, M.S., Marinkovic, K., Schacter, D.L., Rosen, B.R.,

and Halgren, E. (2006). Top-down facilitation of visual recognition. Proc.

Natl. Acad. Sci. USA 103, 449–454.

52. Kringelbach, M.L., Lehtonen, A., Squire, S., Harvey, A.G., Craske, M.G.,

Holliday, I.E., Green, A.L., Aziz, T.Z., Hansen, P.C., Cornelissen, P.L.,

and Stein, A. (2008). A specific and rapid neural signature for parental in-

stinct. PLoS One 3, e1664.

53. Parsons, C.E., Young, K.S., Mohseni, H., Woolrich, M.W., Thomsen, K.R.,

Joensson, M., Murray, L., Goodacre, T., Stein, A., and Kringelbach, M.L.

(2013). Minor structural abnormalities in the infant face disrupt neural
12 Current Biology 31, 1–13, October 25, 2021
processing: a unique window into early caregiving responses. Soc.

Neurosci. 8, 268–274.

54. Kringelbach, M.L., Stark, E.A., Alexander, C., Bornstein, M.H., and Stein,

A. (2016). On cuteness: unlocking the parental brain and beyond. Trends

Cogn. Sci. 20, 545–558.

55. Young, K.S., Parsons, C.E., Jegindoe Elmholdt, E.M., Woolrich, M.W., van

Hartevelt, T.J., Stevner, A.B.A., Stein, A., and Kringelbach, M.L. (2016).

Evidence for a caregiving instinct: rapid differentiation of infant from adult

vocalizations using magnetoencephalography. Cereb. Cortex 26, 1309–

1321.

56. Valente, M., Pica, G., Bondanelli, G., Moroni, M., Runyan, C.A., Morcos,

A.S., Harvey, C.D., and Panzeri, S. (2021). Correlations enhance the

behavioral readout of neural population activity in association cortex.

Nat. Neurosci. 24, 975–986.

57. Runyan, C.A., Piasini, E., Panzeri, S., and Harvey, C.D. (2017). Distinct

timescales of population coding across cortex. Nature 548, 92–96.

58. Baars, B.J. (1989). A Cognitive Theory of Consciousness (Cambridge

University Press).

59. Dehaene, S., Kerszberg, M., and Changeux, J.P. (1998). A neuronal model

of a global workspace in effortful cognitive tasks. Proc. Natl. Acad. Sci.

USA 95, 14529–14534.

60. Mashour, G.A., Roelfsema, P., Changeux, J.-P., and Dehaene, S. (2020).

Conscious processing and the global neuronal workspace hypothesis.

Neuron 105, 776–798.

61. Tononi, G., Sporns, O., and Edelman, G.M. (1994). A measure for brain

complexity: relating functional segregation and integration in the nervous

system. Proc. Natl. Acad. Sci. USA 91, 5033–5037.

62. Northoff, G. (2013). What the brain’s intrinsic activity can tell us about con-

sciousness? A tri-dimensional view. Neurosci. Biobehav. Rev. 37,

726–738.

63. Horvát, S., G�am�anuț, R., Ercsey-Ravasz, M., Magrou, L., G�am�anuț, B.,
Van Essen, D.C., Burkhalter, A., Knoblauch, K., Toroczkai, Z., and

Kennedy, H. (2016). Spatial embedding andwiring cost constrain the func-

tional layout of the cortical network of rodents and primates. PLoS Biol. 14,

e1002512.

64. Kringelbach, M.L., Cruzat, J., Cabral, J., Knudsen, G.M., Carhart-Harris,

R., Whybrow, P.C., Logothetis, N.K., and Deco, G. (2020). Dynamic

coupling of whole-brain neuronal and neurotransmitter systems. Proc.

Natl. Acad. Sci. USA 117, 9566–9576.

65. Deco, G., Cruzat, J., Cabral, J., Knudsen, G.M., Carhart-Harris, R.L.,

Whybrow, P.C., Logothetis, N.K., and Kringelbach, M.L. (2018). Whole-

brain multimodal neuroimaging model using serotonin receptor maps ex-

plains non-linear functional effects of LSD. Curr. Biol. 28, 3065–3074.e6.

66. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., and

Ugurbil, K.; WU-Minn HCP Consortium (2013). The WU-Minn Human

Connectome Project: an overview. Neuroimage 80, 62–79.

67. Marcus, D.S., Harwell, J., Olsen, T., Hodge, M., Glasser, M.F., Prior, F.,

Jenkinson, M., Laumann, T., Curtiss, S.W., and Van Essen, D.C. (2011).

Informatics and data mining tools and strategies for the Human

Connectome Project. Front. Neuroinform. 5, 4.

68. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B.,

Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., et al.;

WU-Minn HCP Consortium (2013). The minimal preprocessing pipelines

for the Human Connectome Project. Neuroimage 80, 105–124.

69. Smith, S.M., Beckmann, C.F., Andersson, J., Auerbach, E.J.,

Bijsterbosch, J., Douaud, G., Duff, E., Feinberg, D.A., Griffanti, L.,

Harms, M.P., et al.; WU-Minn HCP Consortium (2013). Resting-state

fMRI in the Human Connectome Project. Neuroimage 80, 144–168.
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact: Morten L. Kringelbach

(morten.kringelbach@psych.ox.ac.uk).

Materials availability
The dataset used for this investigation was from an independent publicly available dataset of fMRI data, where we chose a sample of

1003 participants selected from the March 2017 public data release from the Human Connectome Project (HCP).66

Data and code availability

d The HCP dataset is available at https://www.humanconnectome.org/study/hcp-young-adult.

d The code to run the analysis is available on GitHub (https://github.com/decolab/cb-longrange).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODELS AND SUBJECT DETAILS

Neuroimaging ethics
TheWashington University–University of Minnesota (WU-Minn HCP) Consortium obtained full informed consent from all participants,

and research procedures and ethical guidelines were followed in accordance with Washington University institutional review board

approval.

Neuroimaging participants
The dataset used for this investigation was selected from the March 2017 public data release from the Human Connectome Project

(HCP) where we chose a sample of 1003 participants.

METHOD DETAILS

Neuroimaging acquisition for fMRI HCP
The 1003HCPparticipants were scanned on a 3-T connectome-Skyra scanner (Siemens).We used one resting state fMRI acquisition

of approximately 15minutes acquired on the same day, with eyes openwith relaxed fixation on a projected bright cross-hair on a dark

background. The HCP website (https://www.humanconnectome.org/) provides the full details of participants, the acquisition proto-

col and preprocessing of the data for resting state.

Preprocessing and extraction of functional timeseries in fMRI resting data
The preprocessing of the HCP resting state and task datasets is described in details on the HCP website. Briefly, the data is prepro-

cessed using the HCP pipeline which is using standardized methods using FSL (FMRIB Software Library), FreeSurfer, and the
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ConnectomeWorkbench software.67–69 This preprocessing included correction for spatial and gradient distortions and headmotion,

intensity normalization and bias field removal, registration to the T1 weighted structural image, transformation to the 2mm Montreal

Neurological Institute (MNI) space, and using the FIX artifact removal procedure.69,70 The head motion parameters were regressed

out and structured artifacts were removed by ICA+FIX processing (Independent Component Analysis followed by FMRIB’s ICA-

based X-noiseifier71,72). Preprocessed timeseries of all grayordinates are in HCP CIFTI grayordinates standard space and available

in the surface-based CIFTI file for each participants for resting state.

We used a custom-madeMATLAB script using the ft_read_cifti function (Fieldtrip toolbox73) to extract the average timeseries of all

the grayordinates in each region of the Schaefer parcellation, which are defined in the HCP CIFTI grayordinates standard space.

Furthermore, the BOLD time series were transformed to phase space by filtering the signals in the range between 0.008-0.08 Hz,

where we chose the typical highpass cutoff to filter low-frequency signal drifts,74 and the lowpass cutoff to filter the physiological

noise, which tends to dominate the higher frequencies.74,75 We then applied the Hilbert transforms in order to obtain the phases

of the signal for each brain node as a function of the time. We computed the functional connectivity (FC) as the correlation between

the BOLD timeseries in all 1000 regions in the Schaefer Parcellation.

Structural connectivity using dMRI
The Human Connectome Project (HCP) database contains diffusion spectrum and T2-weighted imaging data from 32 participants

with the acquisition parameters described in details on the HCP website.76 The freely available Lead-DBS software package

(https://www.lead-dbs.org/) provides the preprocessing which is described in details in Horn and colleagues77 but briefly, the

data was processed using a generalized q-sampling imaging algorithm implemented in DSI studio (http://dsi-studio.labsolver.

org). Segmentation of the T2-weighted anatomical images produced a white-matter mask and co-registering the images to the

b0 image of the diffusion data using SPM12. In each HCP participant, 200,000 fibers were sampled within the white-matter

mask. Fibers were transformed into MNI space using Lead-DBS.78 We used the standardized methods in Lead-DBS to produce

the structural connectomes for both Schaefer 1000 parcellation Scheme79 where the connectivity has been normalized to a

maximum of 0.2.

Exponential distance rule
We fitted the underlying anatomy obtained with human diffusion MRI (see above) to the Exponential Distance Rule (EDR), originally

derived from massive retrograde tract tracing in non-human primates.11 Mathematically this can be expressed as an exponential

decay function:

CEDR
np = e�lðrðn;pÞÞ (1)

where rðn;pÞ is the Euclidean distance between the regions n and p, and the decay, l.

Schaefer parcellation
Schaefer and colleagues created a publicly available population atlas of cerebral cortical parcellation based on estimation from a

large dataset (N = 1489).79 They provide parcellations of 400, 600, 800, and 1000 areas available in surface spaces, as well as

MNI152 volumetric space. We used here the Schaefer parcellation with 1000 areas and estimated the Euclidean distances from

the MNI152 volumetric space and extracted the timeseries from HCP using the HCP surface space version.

QUANTIFICATION AND STATISTICAL ANALYSIS

Hopf whole-brain model
At the heart of whole-brain network models is the link between anatomical structure and functional dynamics, introduced more

than a decade ago.80,81 Typically, the anatomy is represented by the structural connectivity (SC) of an individual or average brain,

measured in vivo by diffusion MRI (dMRI) combined with probabilistic tractography. The spatial resolution is in the order of

1-2 mm, but with ultra-high field MRI resolutions 0.4 mm can be reached. The structural connectome denotes the wire-diagram

of the connections between cortical regions as ascertained from dMRI tractography. The functional global dynamics result from

the mutual interactions of local node dynamics coupled through the underlying empirical anatomical SC matrix. Whole-brain

models aim to balance between complexity and realism in order to describe the most important features of the brain in vivo.18

Recent developments have shown that whole-brain models are able to describe not only static FC (averaged over all time points),

but also dynamical measurements like the temporal structure of the activity fluctuations, the so-called functional connectivity

dynamics (FCD).24,82

Here we used the Hopf whole-brain model consisting of coupled dynamical units (ROIs or nodes) representing the N cortical brain

areas from a given parcellation.24 We used all 1000 cortical nodes in the Schaefer parcellation. The local dynamics of each brain re-

gion is described by the normal form of a supercritical Hopf bifurcation, also known as the Landau-Stuart Oscillator, which is the ca-

nonical model for studying the transition from noisy to oscillatory dynamics.83 Coupled together with the brain network architecture,

the complex interactions between Hopf oscillators have been shown to reproduce significant features of brain dynamics observed in

electrophysiology,84,85 MEG,86 and fMRI.64,87
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The whole-brain dynamics was defined by the following set of coupled equations in Cartesian coordinates:

dxn
dt

= anxn �
�
x2n + y2n

�
xn � unyn +G

XN
p= 1

CnpðxpðtÞ� xnÞ+ nhnðtÞ (2)
dyn
dt

= anyn �
�
x2n + y2n

�
yn +unxn +G

XN
p= 1

Cnp

�
ypðtÞ� yp

�
+ nhnðtÞ (3)

where hnðtÞ is additive Gaussian noisewith standard deviation n = 0:01. This normal form has a supercritical bifurcation an = 0, so that

if an > 0, the system engages in a stable limit cycle with frequency fn = un=2p. On the other hand, when an < 0, the local dynamics are

in a stable fixed point representing a low activity noisy state. Within this model, the intrinsic frequencyfn is estimated from the empir-

ical data as the peak of the power spectrum. Here, the subindex n denotes the region taken from (1..N), where N is the total number

regions. The local bifurcation parameters, an = � 0:02, are at the brink of the local bifurcations where the best fitting to the empirical

data was demonstrated. The variable xn emulates the BOLD signal of each region n. Tomodel thewhole-brain dynamicswe added an

additive coupling term representing the input received in region n from every other region p, which is weighted by the corresponding

structural connectivity Cnp, which can correspond to the connectivity with EDR ðCEDR
np Þ or EDR+LR CEDR+ LR

np . In this term, G denotes

the global coupling weight, scaling equally the total input received in each brain area. All the measures related to whole-brain model

were estimated for each global coupling work point, G, running the simulations 100 times and averaging the results.

Turbulence
The study of turbulence inmodern physics has led to enormous progress in the fields of fluid and oscillator dynamics.30,38,42 It is well-

known that coupled oscillators fit brain dynamics.24,84,85 However, for the brain to function optimally, it has to support efficient infor-

mation transfer and here we hypothesize that turbulence provides the intrinsic backbone necessary for brain dynamics.

Historically, in fluid dynamics the study of turbulence was greatly influenced by Richardson’s concept of cascading eddies reflect-

ing energy transfer, where the hierarchical organization of different sizes of eddies is schematised for the turbulent so-called ‘inertial

subrange’, i.e., the range where turbulence kinetic energy is transferred without loss from large to smaller scales. Here, we propose

that this hierarchical organization of oscillators leads to an information cascade in the inertial subrange.

The measure of turbulence comes from the study of coupled oscillators and in particular the seminal studies by Kuramoto inves-

tigating turbulence in coupled oscillators.30 Specifically, in a coupled oscillator framework, the Kuramoto local order parameter rep-

resents a spatial average of the complex phase factor of weighted coupling of local oscillators.

Specifically, the amplitude turbulence, Rlðx;tÞ, is defined as the modulus of the local order parameter for a given brain node as a

function of time:

Rl

�
x; t

�
eiwlðx;tÞ = k

ZN
�N

dx0Gl

�
x� x0

�
ei4ðx0 ;tÞ (4)

where 4ðx; tÞ are the phases of the spatiotemporal data, Gl is the local weighting kernel GlðxÞ = e�l

��x��, k is the normalization factor

½ RN
�N

dx0Glðx � x0Þ��1 and l is defines the scaling of local weighting. In other words,Rl defines local levels of synchronization at a given

scale, l, as function of space, x, and time, t. Thismeasure captures what we here call brain vortex space, Rl, over time, inspired by the

rotational vortices found in fluid dynamics, but of course not identical.

The level of amplitude turbulence is defined as the standard deviation of the modulus of Kuramoto local order parameter and can

be applied to the empirical data of any physical system. The amplitude turbulence, D, corresponds to the standard deviation across

time and space of Rl:

D = CRl
2Dx;t � CRlD

2

x;t (5)

where the brackets CDx;t denotes averages across space and time.

Except for a very recent study,28 amplitude turbulence has been studied exclusively in the supercritical regime of the Stuart-

Landau coupled oscillators.88,89 Yet, given that a range of papers have demonstrated that the Stuart-Landau oscillators fit the neuro-

imaging brain data when used in the subcritical regime at the edge of the bifurcation,24,86,87,90 it was recently demonstrated to fit the

functional MRI data from 1003 participants and to exhibit amplitude turbulence as characterized by Equation 5.28 The subcritical

regime at the edge of the bifurcation is not showing deterministic spatiotemporal chaos in the way found in under the supercritical

regime but rather some very interesting state dynamics, perhaps best described as turbulent-like or turbulent fluctuation, which are

described by Equation 5.
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Measures of information processing
Here we quantify information processing by characterizing the transmission of information over spacetime. First, we defined a con-

ventional method, namely 1) long-range functional connectivity, i.e., correlations inMNI space but only taking into account long range

Euclidean distances. Second, we defined three complementary information processing transmission measurements in brain vortex

space: 2) information cascade, 3) susceptibility and 4) predictability. The concept of brain vortex space is given by the local level of

synchronization and the transmission of information over space and time. This is important given that information is transferred

across space and time, mediated by local synchronization.

Long-range functional connectivity
Rather than working in brain vortex space, it is also desirable to characterize information processing by using conventional functional

connectivity as a function of a given distance, given by FC(r) in MNI space. In fact, this can be derived from Kolmogorov’s concept of

structure function for a given distance, S(r), of a variable u40,41 in spatiotemporal data in the following manner:

SðrÞ =
D�

u
�
x + r

�
� u

�
x
��2E

x;t
= 2½FCð0Þ� FCðrÞ� (6)

In this equation the basic functional connectivity, FC, between two points separated by the Euclidean distance r, is given by:

FCðrÞ =
D
u
�
x + r

�
u
�
x
�E

x;t
(7)

where the symbol CDx;t refers to the average across the spatial location x of the nodes and time. Using these relations, we are able to

study the impact of different architectures on the functional connectivity for long-range distances (FC long-range), here defined as

distances over 40mm.

Information cascade
As mentioned, the measure of information cascade uses the concept of brain vortex space, Rl, and is defined as the average across

scales, l; of the information cascade flow, which indicates the predictability of a given brain vortex space at scale l from the brain

vortex space at scale l� Dl (where Dl is the discretisation of scale).

In other words, themeasure captures information transfer across scales through local synchronization in brain vortex space. Math-

ematically, information cascade flow can be expressed as:

FðlÞ =
D
corrt

�
Rl

�
x; t +Dt

�
;Rl�Dl

�
x; t

��E
x

(8)

where Dt is the size of the time step (and thus fixed), and Dl is also fixed according to the used range

l = [4210.50.250.1250.06250.0312]. The symbol CDx refers to the spatial average of the correlation over time, corrtðRl;Rl�DlÞ. The
correlation of the level of synchronization at different scales and consecutive time captures the flow of transmission of information

across spacetime.

In particular we wanted to compress this into the single measure information cascade, I, which is simply the average ofFðlÞ across
different scales ðlÞ:

I = CFðlÞDl (9)

where the symbol CDl refers to the average across l:

Susceptibility
Another way of characterizing information processing is to measure the sensitivity of the system when it is perturbed. This requires

building a whole-brain model of the system. The advantage of using a model means that we can easily measure the sensitivity of the

model to external perturbation, which is a standard physics measure usually called susceptibility. Indeed, this measure can be ob-

tained by perturbing the whole-brain model at the optimal working point by randomly changing the local bifurcation parameter, an, in

the range [-0.02:0] at the node level n. Susceptibility is measured by the effects of the perturbation on the brain vortex space, i.e.,

estimated by measuring the modulus of the local Kuramoto order parameter, i.e., ~Rlsðx; tÞ for the perturbed case, and Rlsðx; tÞ for
the unperturbed case. Thus, we define susceptibility s follows:

c =

***
~Rls

�
x; t

�+
t

�
D
Rls

�
x; t

�E
t

!+
trials

+
x

(10)

where CDt, CDtrials and CDx are the mean averages across time, trials and space, respectively.

Predictability in brain vortex space
Yet another measure of information processing is to measure the level of predictability in brain vortex space for q steps in the future.

The predictability is computed by the correlation corrtðRlsðx; tÞ; Rlsðx; t +qÞÞ, where corrt signifies correlation across time.
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Ring architecture
In order to understand the consequences of long-range exceptions on dynamics in the context of turbulence, we study the simplest

system, namely a ring architecture. We constructed three different types of ring architectures: nearest neighbor (NN, black ring), EDR

(blue ring) and rare long-range (LR, red ring) in the following way:

1) Nearest neighbor (NN) ring architecture, and where CNN
np = 1, if p = n ± 1 or CNN

np = 0, otherwise.

2) The EDR ring architecture is given by Equation 1, here called CEDR
np . Here rðn;pÞ is the distance between nodes n and p, given by

the absolute value divided by a scaling factor k = 10, i.e., jp � nj=k. The coupling decay factor is given by l = 1.

3) Rare long-range (LR) is similar to the EDR ring architecture but with additional random connections, here called CEDR+LR
np . We

add these connections similar to the small-world procedure described in Watts and Strogatz36 by going over all connections

and replacing pairs randomly with a probability of p and allocating these connections a coupling strength of 0.25.

This allowed us to create three corresponding models of coupled Stuart-Landau oscillators, where for various scenarios we

measured turbulence, averaged functional connectivity at long-range distances (FC long-range) and information cascade. We ran

the three models for 1000 timesteps over 100 trials. Specifically, turbulence was computed as above, while the FC long-range

was computed as the mean value of functional connectivity pairs with the top 20% largest distance. The range of scales of l

used for estimating F and I was given by l = [4210.50.250.1250.06250.0312] (as above).
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