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SUMMARY

Understanding the underlyingmechanisms of the hu-
man brain in health and disease will require models
with necessary and sufficient details to explain how
function emerges from the underlying anatomy and
is shaped by neuromodulation. Here, we provide
such a detailed causal explanation using a whole-
brain model integrating multimodal imaging in
healthy human participants undergoingmanipulation
of the serotonin system. Specifically, we combined
anatomical data from diffusion magnetic resonance
imaging (dMRI) and functional magnetic resonance
imaging (fMRI) with neurotransmitter data obtained
with positron emission tomography (PET) of the
detailed serotonin 2A receptor (5-HT2AR) density
map. This allowed us to model the resting state
(with and without concurrent music listening) and
mechanistically explain the functional effects of
5-HT2AR stimulation with lysergic acid diethylamide
(LSD) on healthy participants. Thewhole-brainmodel
used a dynamicalmean-field quantitative description
of populations of excitatory and inhibitory neurons as
well as the associated synaptic dynamics, where the
neuronal gain function of the model is modulated
by the 5-HT2AR density. The model identified the
causativemechanisms for the non-linear interactions
between the neuronal and neurotransmitter sys-
tem, which are uniquely linked to (1) the underlying
anatomical connectivity, (2) the modulation by the
specific brainwide distribution of neurotransmitter
receptor density, and (3) the non-linear interactions
between the two. Taking neuromodulatory activity
into account when modeling global brain dynamics
will lead to novel insights into human brain function
in health and disease and opens exciting possibilities
for drug discovery and design in neuropsychiatric
disorders.

INTRODUCTION

Human brain activity results from the self-organization of large

neural networks, emerging from complex recursive non-linear

interactions between interconnected neural populations [1–3].

Understanding brain function and dysfunction clearly requires

measurements of such activity in various spatiotemporal scales,

some of which may be done by combining neurophysiological

and neuroimaging methods, including electrical measurements,

fMRI, dMRI (diffusionMRI), and PET (positron emission tomogra-

phy) [4, 5]. Moreover, modeling of such large-scale brain

dynamics is absolutely essential for gaining insights into the

generative mechanisms of ongoing neuronal dynamics [6, 7].

Not surprisingly, following the development and optimization

of various methodologies over the last 2 decades, significant

progress has been made in measuring the spontaneous spatio-

temporal unfolding of brain activity, revealing a repertoire of what

is currently called resting-state networks [8–10]. In parallel, the

spatial patterns of correlated activity in such networks have

been increasingly studied with a variety of computational
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methods, including whole-brain models relying on the mean

activity and variance of excitatory and inhibitory neuronal popu-

lations [1, 3, 6, 11–14].

However, the explanatory and potentially predictive power of

neuronal population models, such as those of neural mass and

mean field, strongly depend on the integration of information

that may selectively and differentially affect the activity of popu-

lations at different spatial scales [5]. More specifically, whole-

brain models commonly rely on structural and functional

connectivity of a number of anatomically defined brain regions,

the activity of each of which is described by the estimated

mean activity of local neuronal populations. Yet, it is now well

established that such activity is strongly modulated by the syner-

gistic interactions of the diffuse ascending systems, spreading in

a global or local fashion by so-called neuromodulators, including

acetylcholine, various monoamines, and tryptamines [15–17].

The effects of these neuromodulators go well beyond the activity

profiles of typical excitation-inhibition microcircuits and could

only be computationally assessed by having detailed maps of

regional density of their receptors.

To address this important problem, we combine standard

anatomical and functional maps of the human brain with a

detailed map of 5-HT2A receptor (5-HT2AR) density of the neuro-

modulator serotonin, obtained from a new high-resolution

human brain in vivo atlas [18], recently composed on the basis

of images from 210 healthy individuals (see details of radio-

tracers in [18]). We added the receptor maps to the standard

whole-brain model by investigating how gain values can be

adapted by the local regional values of the PET-based empirical

values of 5-HT2AR density. To this end, we defined a global gain

scaling parameter, sE, which was added to the original fixed gain

parameters (which were the same for all regions) and thus

scaling the regional 5-HT2AR values influencing the recursive

circuits of excitatory and inhibitory neurons. We first fitted the

model to the placebo condition but not the LSD condition, i.e.,

assuming zero values of sE that correspond to the original gain

values. The main question then becomes whether any sE values

would fit the LSD condition (using the sensitivity of the functional

connectivity dynamics) while still using the original whole-brain

placebo model but now including the new element of receptor

binding through the global gain scaling parameter, which modu-

lates each region with the different empirical measures of

5-HT2AR binding. If this were found to be true, neurotransmitter

modulation of whole-brain activity dynamics would be—for the

first time—quantitatively ascribed to one type of receptor bind-

ing (here 5-HT2A) that would be modulating brainwide neural

responses.

RESULTS

The main aim is to provide a detailed mechanistic explanation of

how neuromodulation is coupled with the neuronal system and

serves to shape how function emerges from the underlying anat-

omy. Here, we describe the results of using a whole-brain model,

integrating a whole-brain density map of the 5-HT2AR [18] with

traditional structural and functional connectivity representations

obtained by means of dMRI and fMRI, respectively. The combi-

nation of the multimodal data in the whole-brain model is

described in schematized form in Figure 1. Notably, the model
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only uses two parameters: a neuronal parameter scaling the

global coupling of neuronal populations and a neuromodulator

parameter scaling the effects of neurotransmitter on the

neuronal gain function weighted by the empirical regional recep-

tor density. For each of the multimodal neuroimaging modalities,

we used the automated anatomical labeling (AAL) parcellation

with 90 cortical and subcortical regions [19], which has been

extensively and successfully used over the last decade for

resting-state neuroimaging studies and whole-brain modeling.

We investigated the influence of neuromodulation on the

neuronal system using the well-known effects of LSD on the se-

rotonin system by using data obtained in healthy participants

receiving small doses of LSD or placebo, with or without music,

which can acutely induce synesthesia, altered perceptions,

bliss, depersonalization, and mystical experiences [20]. Impor-

tantly, LSD with music has been found to enhance the emotional

response and produced greater feelings of wonder and tran-

scendence compared with listening to music after placebo

[21]. We therefore used the music conditions with placebo and

LSD in order to increase the impact on the serotonin system

(see Figure 3, and we also confirmed the results for the non-mu-

sic condition [Figure S1]).

Specifically, the model was first fitted to the placebo condi-

tion, and subsequently, the regional 5-HT2AR densities from

the in vivo atlas were used to explain the functional resting-state

activity in the LSD condition. The role of the empirical 5-HT2AR

was ultimately assessed by comparing the LSD maps with neu-

romodulatory maps of randomly shuffled 5-HT2AR densities. As

shown below, we found that a robust explanation of global activ-

ity changes induced by the LSD administration is only possible

when the neuromodulation profiles estimated by the density of

the 5-HT2ARs from the in vivo serotonin atlas is taken into

account.

Briefly summarizing the methods (full details can be found in

the STAR Methods), the whole-brain model was composed of

90 anatomically delineated brain regions linked by the structural

connectivity (SC) matrix of fiber densities obtained by tractogra-

phy [23, 24]. The activity of each region was represented by a

dynamic neuronal mean-field model derived from the collective

behavior of empirically validated integrate-and-fire (80% excit-

atory and 20% inhibitory) neurons [25, 26]. The population

responses for pools of excitatory neurons were given by

independent sigmoid functions, regulated by a gain parameter

sE, common in all brain regions and initially set to zero (see

STAR Methods and [25]). In the model, the inter-regional

coupling (given by the SC) was scaled by a single global param-

eter, G, corresponding to the conductivity of each fiber (same for

all fibers). Modulation of the brain’s dynamic working point, i.e.,

changes in the magnitude of coupling of the network (from weak

to strong), could be implemented by changing the G parameter.

Explaining the Influence of Neuromodulation
Our optimization of the whole-brain model on the basis of the

aforementioned diverse structural, functional, and regulatory

data started with the fitting of the whole-brain mean-field model

to the placebo condition, using the same fixed gain-value param-

eters for all regions and adapting only the G coupling parameter.

This optimal global coupling parameter value was subsequently

used for explaining the LSDcondition by selectively changing the



Figure 1. Overview of Integrating Multimodal Data Including Neuromodulation into a Whole-Brain Neuronal Model
We show the basic ingredients for the integration of multimodal neuroimaging data from structural (dMRI, top left), functional (fMRI, bottom left), and

neurotransmission (PET, top right) using the same parcellation for each neuroimaging modality (bottom right) for generating a whole-brain computational model

(middle). Each node of the model is using a realistic underlying biophysical neuronal model including AMPA, GABA, and NMDA synapses as well as

neurotransmitter gain modulation (bottom row) of these.
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neuronal gain of each region according to the empirical

measured 5-HT2AR density. To take into account the spatiotem-

poral fluctuations in functional brain dynamics over time, the

model was fitted to the spatiotemporal dynamics of the data

(i.e., to the functional connectivity dynamics [FCD]) [27–29]

rather than to the static grand-average functional connectivity

[30] (see Figure 2, describing the process of estimating and fitting

the FCD in the whole-brain model). As previously shown, the

FCD is a powerful sensitive measure of the spatiotemporal

changes in functional connectivity, which maximally constrains

the working space parameters of whole-brain models [27, 31].

For this reason, the sensitivity of the FCD offers an excellent

metric for determining subtle differences.

Importantly, the gain values were adapted by taking into

account the local regional values of 5-HT2AR density (see

STAR Methods). Specifically, we defined a global gain-scaling

parameter, sE, which was added to the original fixed gain param-

eters (same for all regions) and thus could serve for scaling of the

regional 5-HT2A values, potentially signaling the influence of the
receptors on the recursive circuits of excitatory and inhibitory

neurons. Zero values of sE yield the original gain values, fitting

the model to the placebo condition but not the LSD condition.

An important subsequent question is whether any sE values

would fit the LSD condition (using the sensitivity of the FCDmea-

sure) while still using the optimal coupling G parameter of the

placebo condition. If this were true, LSD-induced whole-brain

activity dynamics would be quantitatively ascribed to one type

(i.e., 5-HT2A) of serotonergic modulation of brainwide neural

responses.

Results of Fitting Whole-Brain Neuromodulation Model
to Empirical Data
To find the causal mechanisms linking neuromodulation and

neuronal activity, we first estimated the optimal coupling param-

eter G such that the whole-brain model (with original gain values,

i.e., sE = 0 for all regions) optimally fits the placebo condition.

Figure 3A shows the dependency for G of the fitting in terms of

(1) the grand-average static functional connectivity (FC) and (2)
Current Biology 28, 1–10, October 8, 2018 3



Figure 2. Overview of Process for Estimating and Fitting the FCD in the Whole-Brain Model

(A) First, we extract the timeseries from the fMRI data from each brain region in the parcellation (shown here for a single participant).

(B) The average functional connectivity is computed over a sliding window of 30 repetition time (TR) with increments of 2 TR, resulting in time-evolving FC

matrices.

(C) Subsequently, we compute a time-versus-timematrix of FCD, where each entry, FCD(tx,ty), corresponds to the correlation between the FC centered at times tx
and the FC centered at ty.

(D)We generate the distributions of the upper triangular elements of the FCDmatrices over all participants in a given condition (LSD or placebo) and here show the

histogram for the single participant.

(E) The distribution of FCD for the placebo condition is used to fit the whole-brain computational model, which is compared using the Kolmogorov-Smirnov

distance, allowing for an effective evaluation of the model performance in explaining the changes observed in resting-state FC in dynamical terms.
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the FCD. For the FC fitting, higher values indicate a better fit

since it reflects a simple correlation between model and empir-

ical data. We include this measure as the grand-average FC

spatial correlation has traditionally been used to constrain whole

brain, yet it is not particularly sensitive to the spatiotemporal in-

formation [27, 31] and thus not relevant for constraining the

model here. Instead, we show that a better measure for model

fitting is the FCD, which take into account the spatiotemporal

information and where lower values indicate a better fit of the

Kolmogorov-Smirnov distance between the FCD of the model

and empirical data. As is shown in Figures 3A and 3B, the results

using this measure (level of fitting) are excellent. For the subse-

quent analyses, we use this placebo condition for which we

selected the optimum point of G, when the model was fitted to

the FCD (G = 2.1 at minimum of green line in Figure 3A).

The neuromodulatory effects in the LSD condition were then

modeled by estimating the neuronal gain function, namely

by scaling the parameter sE and the corresponding regional

empirical 5-HT2AR data. Figure 3B shows how this approach

significantly changed the fit, revealing an optimal sE value of

approximately 0.2. In contrast, trying to improve the fit with the

placebo condition at the optimal coupling point G as a function

of changing the PET-based excitatory gain modulation (see

STAR Methods) did not show any improvement. There was no

optimal gain modulation. Instead the placebo fit to FCD (green

line in Figure 3B) decreased monotonically, as can be seen by

the green line in Figure 3B. The finding clearly demonstrates
4 Current Biology 28, 1–10, October 8, 2018
that the brain-activity profiles, induced by the 5-HT2AR agonist

LSD (as fitted to the FCD) depend on the precise 5-HT2AR den-

sity distribution map. While we show that this response is non-

linear, this finding is consistent with the existing physiological

literature revealing a main action of psychedelics such as LSD

on the 5-HT2AR [22].

Furthermore, to demonstrate that the LSD function is depen-

dent on the precise distribution of the 5-HT2AR, at the optimal

gain value sE, we randomly shuffled the empirical 5-HT2AR den-

sities; i.e., the original 90 values for the receptor maps were

randomly re-assigned to different regions, and the model was

run 200 times with each different randomly re-assigned receptor

map. Figure 3C shows the results of randomly shuffling the

empirical 5-HT2AR densities across the regions at the optimum

point sE (obtained and shown in Figure 3B). This randomly re-

shuffled manipulation yields a significantly worse fit compared

to the actual empirical receptor densities (as shown by the Wil-

coxon statistics in the boxplot).

In order to further test the robustness of our whole-brain

modeling approach, we used a number of different strategies

to test the specificity of receptor-binding maps. In Figure 3D,

we show a boxplot of the results of using a uniform receptor-

binding distribution (to the far right). This is significantly worse

than all other receptor-binding distributions. We also show the

results of using the other serotonin receptors, namely 5-HT1A,

5-HT1B, 5-HT4, and the serotonin transporter, 5-HTT. These

maps all perform significantly worse than that for the 5-HT2AR,



Figure 3. Results of Whole-Brain Model of Placebo and Explaining

Effects of LSD with 5HT2A Modulation of Gain Function

(A) Whole-brain fitting of the placebo condition shows the fit of grand

average functional connectivity (FC, in red) and functional connectivity

dynamics (FCD, in green) as a function of the global coupling parameter,

G (with the error bars indicating the standard error across simulations). For

the FC fit, higher values indicate a better fit since it reflects a simple cor-

relation between the model and empirical data. However, for the FCD fit,

lower values indicate a better fit since we use the Kolmogorov-Smirnov

distance between the FCD of the model and empirical data (see STAR

Methods for full details). Similar to our previous published research, this

shows that the FCD fitting is much more informative that the static grand-

average FC, which is to be expected given that FCD provides the functional

dynamics. The obtained optimum of G for fitting the model to the FCD (at

minimum of green line, G = 2.1) is then used for the subsequent neuro-

modulatory analyses.

(B) For the LSD condition, when using this optimal coupling point of the pla-

cebo condition and systematically scaling the excitatory gain function in each

region with the empirical 5-HT2AR data, we find that there is an optimum at

around (0.2,0.045) (minimum of blue line). In contrast, varying the scaling of the

neuronal gain for the placebo condition does not yield an optimum (see

monotonically rising green line), and thus the fit is not improved by changing

the scaling of the neuronal gain by 5-HT2AR density. This clearly demonstrates
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which confirms the main role this receptor plays in the effects of

LSD [22]. It has been suggested that the 5-HT1A receptor also

contributes to the effects of LSD [22, 32], and indeed, this is

confirmed by the improved performance of the 5-HT1A recep-

tor-binding map compared to the 5-HT1B, 5-HT4, and 5-HTT

maps [22].

We also wanted to test the generalization capability of our

model by training and testing the 5-HT2AR maps on a random

50% subset of participants. While our sample was comparably

small for a generalization study, we nevertheless were able to

show that the training performance was very similar to the orig-

inal results, while the testing performance was equally good (see

Figure 3D).

Further demonstrating the excellent fit, we plot the FCD histo-

grams of LSD and placebo for both the empirical data and

the optimized model in Figure 3E, where the histograms of

the LSD and placebo conditions are different for both empir-

ical and model. This suggests that the 5-HT2AR density is

fundamental for describing the neuromodulatory effects of

psychedelics.
DISCUSSION

The findings presented here show for the first time the potential

of whole-brain modeling to capture the modulation of brainwide

regional activities, typically induced by the ascending neuromo-

dulatory systems that regulate the balance, excitability, and

specificity of cortical microcircuits and subcortical neuronal as-

semblies. We built a novel whole-brain model integrating

neuronal and neuromodulation multimodal data from dMRI and

fMRI with neurotransmitter data obtained with PET, revealing a

detailed whole-brain map of 5-HT2AR densities. This provided

new causative insights into the non-linear interactions between

anatomy, neuronal activity, and more importantly, specific

neurotransmitter receptor density.

Our framework enabled us to model the resting state (with

and without music listening) and, more importantly, mechanisti-

cally explain the functional effects of 5-HT2AR stimulation with
that the LSD brain activity is dependent on the precise 5-HT2A density distri-

bution maps.

(C) Further, reshuffling the 5-HT2AR densities randomly across the regions at

the optimum point in (B), shown within orange box, makes the fit significantly

worse (p < 0.0016). This again demonstrates that the precise distribution of

5-HT2A is very important for how LSD affects the brain state.

(D) To further test the robustness of our whole-brain modeling approach, we

tested the specificity of other receptor-bindingmaps. Here, we show a boxplot

of the results of the generalization capability of our model by training and

testing the 5-HT2AR maps on 50% subset of participants (columns 2 and 3).

The results are remarkably similar to using the full set of participants, attesting

to the robustness of our results. We also show the results of using other se-

rotonin receptor-binding maps, namely 5-HT1A, 5-HT1B, 5-HT4, and 5-HTT

(columns 4–7), which all perform significantly worse than 5-HT2A, confirming

the main role this receptor to the effects of LSD [22]. Interestingly, however,

5-HT1A receptor-binding map performs slightly better than the 5-HT1B, 5-HT4,

and 5-HTT receptor maps, which confirms its role in LSD [22]. In the last row,

we show the results of using a uniform receptor-binding distribution (column

8), which is significantly worse than all other receptor-binding distributions.

(E) Finally, the FCD histograms of LSD and placebo for both the empirical data

and the optimized model clearly show the excellent fit. We also confirmed the

results for the non-music conditions, as shown in Figure S1.
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well-known 5-HT2AR agonist compound LSD in healthy partici-

pants. We were able to do so by creating a whole-brain model

using the underlying anatomical connectivity linking local nodes,

which were modeled using a dynamical mean-field quantitative

description of populations of excitatory and inhibitory neurons

as well the associated synaptic dynamics, where the neuronal

gain function of the model was modulated by the 5-HT2AR den-

sity. As such, we were able to model the non-linear interactions

between the underlying anatomical connectivity and themodula-

tion by the specific brainwide distribution of neurotransmitter re-

ceptor density.

Importantly, the results were informed by the properties of

the serotonin (5-hydroxytryptamine, 5-HT) system, which is a

remarkably evolutionary conserved neuromodulator/neuro-

transmitter that not only regulates psychophysiological func-

tions like sleep, food intake, body temperature, depression/

anxiety, alcohol/drug-reinforcement, emotional behavior,

environmental sensitivity, and adaptive responsivity but also

modulates cognitive capacities such as learning and memory

by interacting with other neuromodulatory and neurotransmitter

systems [33–36]. 5-HT is synthesized within the brainstem’s

raphe nuclei (dorsal and median), which have distributed

projections to subcortical, limbic, and neocortical regions

[37–39]. On the basis of structural, functional, and transduc-

tional features, 5-HT receptors have been grouped into seven

receptor groups, including a total of 14 subtypes, and one

transporter (5-HTT), which typically transfers a neuromodulator,

e.g., serotonin, from the synaptic cleft to the presynaptic

neuron [40, 41]. The most abundant and extensively researched

subtypes of serotonin receptors are the 5-HT1A and 5-HT2A
receptors [36]; the latter has been shown to mediate an adap-

tive plasticity (i.e., behavioral capacity for change) that is critical

for dealing with pathologies, such as stress, adversity, and

depression [36]. The hallucinogenic effects of psychedelics

such as LSD are mediated through their stimulation of

5-HT2AR [36, 42] (but also to a lesser degree some of the other

receptors), and this mode of action may explain the potentially

beneficial effects on some of the aforementioned pathologies

[43, 44].

The present results extend the recent findings of Shine and

colleagues [45] to the human whole-brain level and specially

emphasize the role of PET-based binding receptors for global

brain dynamics. Until now, it was generally believed that

whole-brain dynamics are shaped mainly by the underlying

anatomy and the local dynamics. But this is not enough to fully

describe the dynamics, as shown by the elegant results of

Shine and colleagues emphasizing the role of gain modulation.

The present results supplement this work while emphasizing

that the incorporation of neuromodulatory properties can

significantly add to an account of global functional dynamics.

Even more importantly, future research should seek to

describe the full entanglement of the two very different neural

and neurotransmitter dynamical systems with very different

timescales.

Here, neuromodulation was artificially induced by using a se-

rotonin agonist, namely the psychedelic LSD. Yet, the method

can be further optimized—potentially by including the receptor

distribution of additional neuromodulators—and used for

discerning self-generated changes in brain states. Clearly, a
6 Current Biology 28, 1–10, October 8, 2018
new approach that can reliably describe the evolution of brain

states would be of great value both for diagnosis of diseases

and drug optimization.

Numerous investigations in human and animals using a great

repertoire of non-invasive and invasive techniques has convinc-

ingly demonstrated that the functional whole-brain activity de-

pends both on effective connectivity and so-called brain states,

reflecting system properties such as anatomical organization,

dynamic thalamocortical loops, and the function of ascending

arousal systems. Evidently, such evolving activity patterns are

affected by diseases and may be eventually used to predict ap-

proaching ‘‘criticalities,’’ as the latter transitions are often pre-

ceded by robust gradual reorganization of complex systems in

general [46].

Further integration of information andmodeling is undoubtedly

important given the inadequacy of animal models and studies at

the microscopic level to fully describe human neuropsychiatric

disorders, which have contributed the paucity of effective clinical

neuropharmacological interventions such as antidepressants

having limited success compared to placebo [47, 48], clearly

indicating that new research strategies are needed [49, 50]. In

fact, the development and discovery of new effective pharmaco-

logical treatments for neuropsychiatric disorders is making in-

cremental progress only, and it has been argued that treatments

available today are no more effective than those available over

50 years ago, despite intensive neurobiological investigation

[49, 51, 52].

What is needed is a mechanistic understanding of the imbal-

ances found in neuropsychiatric disorders, specifically at both

local and global whole-brain levels [4]. This could help open up

rational ways for effective brain interventions to rebalance the

brain networks and help the identification of biomarkers strati-

fying a broad illness phenotype into a finite number of treat-

ment-relevant subgroups [53–56].

Neuropsychiatric disorders are bound together by changes on

many networks of the brain and in particular in the reward

network of the brain [57], with anhedonia, i.e., lack of pleasure,

being the cardinal symptom [58]. Systematic studies of changes

in local and global neuromodulatory activity, development, opti-

mization and classification of models, and observations of drug

effects on themmay greatly increase our understanding of path-

ological states and their potential treatment.

Based on the current findings, we offer here an example of a

pipeline (Figure 4) that could potentially be used to combine

structural, functional, and neurotransmitter neuroimaging

data for modeling a disease state (leftmost). Once the model

is established, the regional drug receptor modulation can

be optimized by finding the optimal weighting of the receptor

density such that the optimized model generates the func-

tional dynamics of the healthy state. The current evidence sug-

gests that it would be important to combine such direct brain

manipulations with environmental manipulations, e.g., drug-

assisted psychotherapy, which could be a particularly fruitful

approach [59].

In summary, we have demonstrated how the anatomical

brainwide distribution of neuromodulatory activity can be inte-

grated in a whole-brain computational model to provide new

causative insights into the non-linear interactions between

anatomy, neuronal activity, and more importantly, specific



Figure 4. Potential of Using Whole-Brain Modeling for Optimal Drug Modulation Discovery

The principles of combining whole-brain computational modeling with neurotransmitter density maps to fit functional brain dynamics open up for novel rational

drug discovery design. The figure provides a pipeline for how to combine structural, functional, and neurotransmitter neuroimaging data to model the disease

state (leftmost). Once the model is established, the regional drug receptor modulation (RDRM) can be optimized by finding the optimal weighting of the receptor

density such that the optimized model generates the functional dynamics of the healthy state.
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neurotransmitter receptor density. These novel insights are only

possible when using a whole-brain model given the fact that it is

not possible to scramble the neurotransmitter receptor density

in vivo. With time, this new approach could eventually lead to

fundamental insights into human brain function in health and dis-

ease and be used for drug discovery and design in neuropsychi-

atric disorders.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Whole-brain modeling Custom software https://github.com/decolab/cb-neuromod

MATLAB 2014b MathWorks https://www.mathworks.com

SPM Wellcome Department of Cognitive Neurology, London, UK https://www.fil.ion.ucl.ac.uk/spm/

FSL FMRIB Software Library https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact: Morten L. Kringelbach

(morten.kringelbach@psych.ox.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Three empirical datasets using human participants were used:

Anatomical connectivity dataset using diffusion magnetic resonance imaging
We used diffusion MRI (dMRI) data collected in 16 healthy right-handed participants at Aarhus University, Denmark (5 women, mean

age: 24.8 ± 2.5). The study was approved by the internal research board at CFIN, Aarhus University, Denmark. Ethics approval was

granted by the Research Ethics Committee of the Central Denmark Region (De Videnskabsetiske Komit�eer for Region Midtjylland).

Written informed consent was obtained from all participants prior to participation.

Functional dataset using functional magnetic resonance imaging
All 15 participants (four women; mean age, 30.5 ± 8.0) were recruited via word of mouth and provided written informed consent to

participate after study briefing and screening for physical and mental health. The study was approved by the National Research

Ethics Service committee London-West London and was conducted in accordance with the revised declaration of Helsinki

(2000), the International Committee on Harmonization of Good Clinical Practice guidelines, and National Health Service Research

Governance Framework. Imperial College London sponsored the research, which was conducted under a Home Office license

for research with schedule 1 drugs. The screening for physical health included electrocardiogram (ECG), routine blood tests, and

urine test for recent drug use and pregnancy. A psychiatric interview was conducted and participants provided full disclosure of their

drug use history. Key exclusion criteria included: < 21 years of age, personal history of diagnosed psychiatric illness, immediate

family history of a psychotic disorder, an absence of previous experience with a classic psychedelic drug (e.g., LSD, mescaline,

psilocybin/magic mushrooms or DMT/Ayahuasca), any psychedelic drug use within 6 weeks of the first scanning day, pregnancy,

problematic alcohol use (i.e., > 40 units consumed per week), or a medically significant condition rendering the volunteer unsuitable

for the study.

Neurotransmitter dataset using positron emission tomography
The participants were healthy male and female controls from the Cimbi database [60]; all data from this database are freely acces-

sible. The data analysis was restricted to include individuals aged between 18 and 45 years. Participants were recruited by adver-

tisement for different research protocols approved by the Ethics Committee of Copenhagen and Frederiksberg, Denmark. A total of

232 positron emission tomography (PET) scans and corresponding structural MRI scans were acquired for 210 individual partici-

pants; 189 participants had only one scan, 20 participants had two scans, and a single had three scans.

METHOD DETAILS

Here we describe the methods for obtaining 1) structural connectivity: probabilistic tractography derived from the dMRI, 2) functional

connectivity: functional dynamics estimated from the fMRI in the placebo and LSD condition, and 3) neurotransmitter density: esti-

mation of the density of the 5HT-2A receptors that has been obtained using PET.
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1. Structural connectivity
Participants and acquisition

Weused dMRI data collected in 16 healthy right-handed participants at AarhusUniversity, Denmark (5 women,mean age: 24.8 ± 2.5).

The imaging data were recorded in a single session on a 3 T Siemens Skyra scanner at CFIN, Aarhus University, Denmark. The

following parameters were used for the structural MRI T1 scan: voxel size of 1 mm3; reconstructed matrix size 256 3 256; echo

time (TE) of 3.8 ms and repetition time (TR) of 2300 ms. dMRI data were collected using TR = 9000 ms, TE = 84 ms, flip angle =

90�, reconstructed matrix size of 106 3 106, voxel size of 1.98 3 1.98 mm with slice thickness of 2 mm and a bandwidth of

1745 Hz/Px. Furthermore, the data were recorded with 62 optimal nonlinear diffusion gradient directions at b = 1500 s/mm2. One

non-diffusion weighted image (b = 0) per 10 diffusion-weighted images was acquired, approximately. One of dMRI images was

collected applying anterior to posterior phase encoding direction and the other acquired in the opposite direction.

2. Functional connectivity
The functional data is described in details in a previous study [20] but here we briefly summarize the study setting and acquisition

protocol.

Study setting and overview

Screening took place at Imperial’s clinical research facility (ICRF) at the Hammersmith hospital campus. Participants who were found

eligible for the study attended two study days that were separated by at least 14 days. On one day, the participants received placebo,

and on the other day they received LSD. The order of the conditions was balanced across participants, and participants were blind to

this order but the researchers were not.

On scanning days, volunteers arrived at the study center at 8:00am. They were briefed in detail about the study day schedule, gave

a urine test for recent drug use and pregnancy, and carried out a breathalyser test for recent alcohol use. A cannula was inserted into

a vein in the antecubital fossa by a medical doctor and secured. The participants were encouraged to close their eyes and relax in a

reclined position when the drug was administered. All participants received 75 mg of LSD, administered intravenously via a 10ml

solution infused over a two minutes’ period, followed by an infusion of saline. The administration was followed by an acclimatization

period of approximately 60 min, in which (for at least some of the time) participants were encouraged to relax and lie with their eyes

closed inside a mock MRI scanner. This functioned to psychologically prepare the participants for being in the subsequent (poten-

tially anxiogenic) MRI scanning environment.

Participants reported noticing subjective drug effects between 5 to 15 min post-dosing, and these approached peak intensity be-

tween 60 to 90 min post-dosing. The duration of a subsequent plateau of drug effects varied among individuals but was generally

maintained for approximately four hours post-dosing. MRI scanning started approximately 70 min post- dosing, and lasted for

approximately 60 min. This included a structural scan and BOLD fMRI. Once the subjective effects of LSD had sufficiently subsided,

the study psychiatrist assessed the participant’s suitability for discharge.

Scanning design and content

The BOLD scanning consisted of three eyes-closed resting state scans, each lasting seven minutes. After each seven-minute scan,

VAS ratings were performed in the scanner via a response-box. The first and third scans were eyes-closed rest but the second scan

also incorporated listening to two excerpts of music from two songs by ambient artist Robert Rich [61]. The stimuli were both 7.3 min

long and were balanced in their acoustic properties, and rich in timbre, but not in rhythm. Pre-study assessments in a separate group

confirmed balance for their emotional potency. In order to reduce interference of fMRI scanning noise with the music experience,

volume-maximization and broadband compression was carried out using Ableton Live 9 software. Each participant listened to

both stimuli, in a balanced order across conditions. Prior to each scan, participants were instructed via onscreen instructions to close

their eyes and relax. Here we used the music + LSD condition since this has been demonstrated to yield a larger effect on brain ac-

tivity [20] but we also found the effects for LSD without music.

Anatomical Scans

Imaging was performed on a 3T GE HDx system. These were 3D fast spoiled gradient echo scans in an axial orientation, with field

of view = 256 3 256 3 192 and matrix = 256 3 256 3 192 to yield 1mm isotropic voxel resolution. TR/TE = 7.9/3.0ms; inversion

time = 450ms; flip angle = 20�.
BOLD fMRI Data Acquisition

Two BOLD-weighted fMRI data were acquired using a gradient echo planer imaging sequence, TR/TE = 2000/35ms, field-of-view =

220mm, 643 64 acquisition matrix, parallel acceleration factor = 2, 90� flip angle. Thirty-five oblique axial slices were acquired in an

interleaved fashion, each 3.4mm thick with zero slice gap (3.4mm isotropic voxels). The precise length of each of the two BOLD scans

was 7:20 min.

3. Neurotransmitter density
The methods used to obtain the 5HT2A receptor density distribution is described in details elsewhere [18] but in the following we

briefly summarize the main methods.

PET and structural MRI

PET data were acquired in list mode on a Siemens HRRT scanner operating in 3D acquisition mode with an approximate in-plane

resolution of 2 mm (1.4 mm in the center of the field of view and 2.4 mm in cortex[62]). The PET scanning used the recently developed

[11C]Cimbi-36 as a selective serotonin 2A (5-HT2A) receptor agonist radioligand [63, 64]. The radioligands for the other serotonin
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receptors are described in the paper by Beliveau and colleagues [18]. PET frames were reconstructed using a 3D–OSEM–PSF algo-

rithm [65, 66]. Scan time and frame length were designed according to the radiotracer characteristics. Dynamic PET frames were

realigned using AIR 5.2.5[67]. T1- and T2-weighted structural MRI were acquired on four different Siemens scanners with standard

parameters. All structural MRIs (T1 and T2) were unwarped offline using FreeSurfer’s gradient-_nonlin_unwarp version 0.8 or online

on the scanner [68]. For further details on structural MRI acquisition parameters, see [60].

Further processing was performed with FreeSurfer 5.3 [69] (http://surfer.nmr.mgh.harvard.edu) using a surface and a volume

stream. The individual cortical surfaces were reconstructed using the structural MRI corrected for gradient nonlinearities. The pial

surfaces were further refined using T2-weighted structural images and corrected manually where necessary. PET–MR coregistration

was estimated using boundary-based registration[70] between the time- weighted sum of the PET time–activity curves (TACs) and

the structural MRI. Additionally, the transformation from individual MR space to normal MNI152 space was estimated with combined

volume–surface (CVS) registration [71].

QUANTIFICATION AND STATISTICAL ANALYSIS

First we provide a general overview of the analysis pipeline used to integrate structural and functional connectivity (diffusionmagnetic

resonance imaging, dMRI, and functional magnetic resonance, fMRI) with neurotransmission (positron emission tomography, PET) in

a model of the placebo and LSD response in healthy participants (see Figure 1 in main paper).

This overview is subsequently followed by the specific methods, namely:

1. Structural connectivity: probabilistic tractography derived from the dMRI

2. Functional connectivity: functional dynamics estimated from the fMRI in the placebo and LSD condition

3. Parcellation: all structural, functional and neuromodulation data are integrated into the Automated Anatomical Labeling (AAL)

parcellation

4. Whole-brain computational model: a dynamic mean field model was used to integrate the available data to fit the placebo con-

dition

5. Neuromodulation in whole-brain model: integration of the neurotransmission data by changing the gain of neurons in the pla-

cebo-fitted whole-brain model in order to fit the LSD condition
1. Structural connectivity
Tractography

For the present study, we used the structural connectivity between the 90 AAL regions obtained in a previous study [11] averaged

across 16 healthy young adults (5 females, mean ± SD age: 24.75 ± 2.54). The linear registration tool from the FSL toolbox (www.

fmrib.ox.ac.uk/fsl, FMRIB, Oxford)[72] was used to coregister the EPI image to the T1-weighted structural image. The T1-weighted

image was co-registered to the T1 template of ICBM152 in MNI space[73]. The resulting transformations were concatenated and

inversed and further applied to warp the AAL template [19] from MNI space to the EPI native space, where interpolation using near-

est-neighbor method ensured that the discrete labeling values were preserved. Thus the brain parcellations were conducted in each

individual’s native space. We generated the structural connectivity (SC) maps for each participant using the dMRI data acquired. We

processed the two datasets acquired (each with different phase encoding to optimize signal in difficult regions). The construction of

these structural connectivitymaps or structural brain networks consisted of a three-step process. First, the regions of thewhole-brain

network were defined using the AAL template as used in the functional MRI data. Second, the connections between nodes in the

whole-brain network (i.e., edges) were estimated using probabilistic tractography. Third, data was averaged across participants.

We note that the recent results fromGordon and colleagueswould seem to suggest that the AAL parcellation is less than optimal, in

that the AAL was the least homogeneous parcellation scheme tested [74]. Nevertheless, it is not clear if the methodology used in that

paper is particularly meaningful. Indeed, in the recent paper by Eickhoff and colleagues, they review the literature on the topographic

organization of the brain and conclude that it is presently not clear what is the right spatial parcellation [75]. Both papers are mostly

concerned with the spatial organization of the brain, while in this ms, we focus on the spatiotemporal global dynamics. For this goal,

AALwould appear to be a good choice for the following reasons: 1) AAL yields excellent significant results in thewhole-brain literature

in general [5, 12, 31]. 2) The relative low number of parcels in the AAL is highly suitable for our very extensive computational demands.

We used the FSL diffusion toolbox (Fdt) in FSL to carry out the various processing stages of the diffusion MRI data. We used the

default parameters of this imaging pre-processing pipeline on all participants. Following this preprocessing, we estimated the local

probability distribution of fiber direction at each voxel [76]. We used the probtrackx tool in Fdt to provide automatic estimation of

crossing fibers within each voxel. This has been shown to significantly improve the tracking sensitivity of non-dominant fiber popu-

lations in the human brain [77].

The connectivity probability from a seed voxel i to another voxel j was defined by the proportion of fibers passing through

voxel i that reach voxel j using a sampling of 5000 streamlines per voxel [77]. This was extended from the voxel level to the region

level, i.e., in an AAL parcel consisting of n voxels, 5000x n fibers were sampled. The connectivity probability Pij from region i to

region j is calculated as the number of sampled fibers in region i that connect the two regions divided by 5000 x n, where n is the

number of voxels in region i. We threshold the SC matrix at 0.1%, i.e., five streamlines.
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For each brain region, the connectivity probability to each of the other 89 regions within the AAL was calculated. Due to the depen-

dence of tractography on the seeding location, the probability from i to j is not necessarily equivalent to that from j to i. However, these

two probabilities are highly correlated across the brain for all participants (the least Pearson r = 0.70, p < 10�50). As directionality of

connections cannot be determined based on diffusion MRI, the unidirectional connectivity probability Pij between regions i and jwas

defined by averaging these two connectivity probabilities. This unidirectional connectivity was considered as a measure of the struc-

tural connectivity between the two areas, with Cij = Cji. We implemented the calculation of regional connectivity probability using

in-house Perl scripts. For both phase encoding directions, 90x90 symmetric weighted networks were constructed based on the

AAL90 parcellation, and normalized by the number of voxels in each AAL region; thus representing the structural connectivity network

organization of the brain.

We applied the AAL90 template using the FLIRT tool from the FSL toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford) to coregister

the b0 image in diffusion MRI space to the T1-weighted structural image and then to the T1 template of ICBM152 in MNI space [73].

The two transformation matrices from these coregistration steps were concatenated and inversed to subsequently be applied to

warp the AAL templates [19] from MNI space to the diffusion MRI native space.

2. Functional connectivity
Preprocessing

We first preprocessed the fMRI data using MELODIC 3.14 [78], part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl) with

standard parameters and not discarding any ICA components. Head motion during the experiments was corrected using the FSL

tools mcflirt as part of the standard MELODIC pipeline and was within normal acceptable range for neuroimaging experiments. Spe-

cifically, the cloud plot in Figure S7 in the original LSD data paper [20] shows that motion is similar in the placebo and LSD conditions

in terms of its effects on biasing potential related motion artifacts. For each participant and for each brain state (i.e., placebo and

LSD), we used FSL tools to extract and average the BOLD signals fromall voxels within each ROI defined in the AAL atlas (considering

only the 90 cortical and subcortical non-cerebellar brain regions) [19]. We computed both the static functional connectivity (FC) and

the functional connectivity dynamics (FCD). In brief, the FCD is a matrix that expresses the spatiotemporal statistics of a snapshot of

FC across different sliding windows. The matrix is thus not locked in time to a particular instance and the spatiotemporal evolution

(between different sessions, subjects or simulations) is thus not aligned. As a consequence, comparing the differences between

empirical and whole-brain model level of fitting, we need to compare the distributions of the elements of those matrices. For this

the standard method is to use the Kolmogorov-Smirnov (KS) distance (see details in [31]) where a smaller value means better fit.

For the grand average FC, the standard approach is to use correlation between the FC matrices, because the matrices are aligned

and what matters are the correlations between different pairs, i.e., a higher correlation value would mean a better fit. More specif-

ically, we computed FC and FCD in the following ways:

1) Static Functional Connectivity

The static FC is defined as theNxNmatrix of BOLD signal correlations between brain areas computed over the whole recording time.

The empirical and simulated FC matrices were compared by computing the Pearson correlation between their upper triangular

elements (due to matrix symmetry).

2) Functional Connectivity Dynamics

To consider the temporal dynamics of resting-state FC, we computed the FC over a sliding window of 30 TR with increments of 2 TR,

resulting in a time-evolving FCmatrix (see Figure 2). Subsequently, we compute a time-versus-timematrix of Functional Connectivity

Dynamics (FCD), where each entry, FCD(tx,ty), corresponds to the correlation between the FC centered at times tx and the FC

centered at ty.

Typically, the FCD matrices computed in the resting-state reveal a characteristic checkered pattern indicative of spontaneous

switching between different FC patterns. Importantly, the distribution of FCD values contains valuable information regarding the

time-dependencies of resting-state activity and we use it to as way to characterize the dynamical properties of resting-state activity

in the different conditions and simulations. To do so, we generate the distributions of the upper triangular elements of the FCD

matrices over all participants in a given condition (LSD or placebo), as well as of the FCD matrices obtained from simulations. The

different distributions are then compared using the Kolmogorov-Smirnov (KS) distance, allowing for a meaningful evaluation of

the model performance in predicting the changes observed in resting-state FC in dynamical terms.

3. Parcellation
Based on our previous whole-brain studies we used the AAL atlas but considering only the 90 cortical and subcortical non-cerebellar

brain regions [19]. All structural, functional and neuromodulation data was integrated using this atlas. We used FSL tools on the freely

available 5HT2A receptor density map in MNI space to extract the average receptor density for each individual AAL region.

4. Whole-Brain Dynamic Mean Field Model
We used a network model to simulate spontaneous brain activity at the whole-brain level, where each node represents a brain area

and the links represent the white matter connections between them. The activity in each brain area is represented by the Dynamic

Mean Field (DMF) model proposed by Deco et al. [25], which reduces the activity of large ensembles of interconnected excitatory and

inhibitory spiking neurons to a reduced set of dynamical equations describing the activity of coupled excitatory (E) and inhibitory (I)

pools of neurons, based on the original reduction of Wong andWang [79]. In this DMF reduction, the excitatory synaptic currents, I(E),
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are mediated by NMDA receptors and the inhibitory currents, I(I), are mediated by GABAA receptors. Within each brain area n, the E

and I neuronal pools are reciprocally connected, whereas inter-area coupling between two areas n and p occurs only at the E-to-E

level and is scaled by the structural connectivity Cnp (see Methods - Structural Connectivity).

More specifically, the DMF model at the whole-brain level is expressed by the following system of coupled differential equations:
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Here, for each excitatory (E) or inhibitory (I) pool of neurons in each brain area n, In
(E,I) (in nA) represents the total input current, rn

(E,I)

(in Hz) denotes the firing rate and Si
(E,I) denotes the synaptic gating variable. The neuronal response functions, H(E,I), convert the total

input currents received by the E and I pools into firing rates, ri
(E,I), following the input-output function of Abbott andChance [80], where

gE = 310 nC-1 and gI = 615 nC-1 are gain factors determining the slope of H, Ithr
(E) = 0.403 nA, and Ithr

(I) = 0.288 nA are the threshold

currents above which the firing rates increase linearly with the input currents, and dE = 0.16 and dI = 0.087 are constants determining

the shape of the curvature ofH around Ithr. The synaptic gating variable of excitatory pools, Si
(E), is controlled by NMDA receptors with

a decay time constant tNMDA = 0.1 s and g = 0.641, whereas the average synaptic gating in inhibitory pools depends on GABA

receptors with tGABA = 0.01 s. The overall effective external input is I0 = 0.382 nA with WE = 1 and WI = 0.7. Furthermore, w+ = 1.4

is the weight of recurrent excitation and JNMDA = 0.15 nA weighs all excitatory synaptic couplings. In Equations 5 and 6 yn is uncor-

related standard Gaussian noise with an amplitude of s = 0.01nA. All parameters were set as in Wong and Wang [79].

The parameters of the DMF model were defined in Wong and Wang [79] to emulate resting-state conditions, such that each iso-

lated node displays the typical noisy spontaneous activity with low firing rate (r(E)�3Hz) observed in electrophysiology experiments

[81–84]. Moreover, following Deco et al. [25], the inhibition weight, Jn, was adjusted for each node n such that the firing rate of the

excitatory pools rn
(E) remains clamped at 3Hz even when receiving excitatory input from connected areas. This regulation is known

as Feedback Inhibition Control (FIC) and the algorithm to achieve it is described in Deco et al. [25]. It has been demonstrated that the

FIC leads to a better prediction of the resting-state FC and to a more realistic evoked activity [25].

Following the parcellation applied to the structural and functional MRI data, we considered N = 90 brain areas in our whole-brain

network model. Each area n receives excitatory input from all structurally connected areas p into its excitatory pool, weighted by the

connectivity matrix, Cnp, obtained from dMRI (seeMethods: Structural Connectivity). Furthermore, all inter-area E-to-E connections

are equally scaled by a global coupling factor G. This global scaling factor is the only control parameter that is adjusted to move the

system to its optimal working point, where the simulated activity maximally fits the empirical resting-state activity of participants un-

der placebo conditions.

Simulations were run for a range ofG between 0 and 2.5 with an increment of 0.025 andwith a time step of 1ms. For eachG, we ran

200 simulations of 435 s each, in order to emulate the empirical resting-state scans from 15 participants.

Simulated BOLD Signal

To transform the simulatedmean field activity into a BOLD signal we used the generalized hemodynamicmodel of Stephan et al. [85].

We compute the BOLD signal in each brain area n from the firing rate of the excitatory pools rn
(E), such that an increase in the firing rate

causesan increase in a vasodilatory signal, sn, that is subject toauto-regulatory feedback.Blood inflow fn responds inproportion to this

signal inducing changes in blood volume vn and deoxyhemoglobin content qn. The equations relating these biophysical variables are:

dsn=dt = 0:5rðEÞn + 3� ksn � gðfn � 1Þ (7)
dfn=dt = sn (8)
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where r is the resting oxygen extraction fraction, t is a time constant and a that represents the resistance of the veins. Finally, the

BOLD signal in each area n, Bn, is a static nonlinear function of volume, vn, and deoxyhemoglobin content, qn, that comprises a

volume-weighted sum of extra- and intravascular signals:

Bn =V0

�
k1ð1� qnÞ+ k2

�
1� qn=vn

�
+ k3ð1� vnÞ

�
(11)

All biophysical parameters were taken as in Stephan et al. [85]. To concentrate on the frequency range where resting-state activity

appears the most functionally relevant, both empirical and simulated BOLD signals were band pass filtered between 0.1 and 0.01 Hz

[8, 86–88].

5. Serotonergic Modulation
We used the high-resolution atlas of human brain serotonin systemmeasured with PET by Beliveau et al. [18] (see above) to obtain a

quantitative measure of 5-HT2A receptor density in each AAL region n, d5HT2An. Density values were divided by the maximum, such

that max(d5HT2A) = 1.

We used d5HT2An to modulate the firing rates ri
(E,I) of the excitatory and inhibitory pools of each brain region, following a number of

experimental studies in cats and rats showing that serotonin injection modulates the firing rate of neurons with 5-HT receptors

[89–93]. Moreover, while some neurons respond with an increased firing rate, others consistently decrease the firing rate after sero-

tonin injection, indicating that 5-HT2A receptors have both excitatory and inhibitory effects [89, 90].

To be precise, we consider that d5HT2Anmodulates the gain of the neuronal response functionH(E) in each brain area according to

the modified Equation 3, using the standard computational definition of gain modulation given by Chance and colleagues [94]:

rðEÞn =HðEÞ
�
IðEÞn

�
=

g0gE

�
IðEÞn � I

ðEÞ
thr

�

1� exp
�
� dEg

0gE

�
IðEÞn � I

ðEÞ
thr

��

g0 = 1+ sEd5HT2An

(12)

Here, the scaling factor sE is the only free parameter equally scaling in all brain areas the slope of H in the E pool according to the

normalized density of serotonin receptors in each area, d5HT2An. To simulate the resting-state activity under placebo condition, we

use sE = 0.

DATA AND SOFTWARE AVAILABILITY

The code to run the analysis is available on GitHub (https://github.com/decolab/cb-neuromod). The multimodal neuroimaging data

from the experiment is available upon request.
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Figure S1. Results of whole-brain model of non-music LSD condition, related to Figure 3. 
 

In order to confirm the results from the music LSD condition, we modelled the two non-music LSD  

conditions. (A) For the LSD conditions (no music pre and post), when using the optimal coupling point of the 

placebo condition and systematically scaling the excitatory gain function in each region with the empirical 

5-HT2A receptor data, we find that there is an optimum at around (0.17,0.036) (minimum of blue line, pre 

music) and at around (0.18,0.041) (minimum of red line, post music). In contrast, varying the scaling of the 

neuronal gain for the placebo condition does not yield an optimum (see monotonically rising green line) and 

thus the fit is not improved by changing the scaling of the neuronal gain by 5-HT2A receptor density (with the 

error bars for three lines indicating the standard error across simulations). This clearly demonstrates that the 

LSD brain activity is dependent on the precise 5-HT2A density distribution maps irrespective of music-

listening. (B) Further, in the boxplot, we compare results of using the 5-HT2A        receptor densities across 

the regions at the optimum points, which are both significantly different (p<6.80e- 

08) from a uniform receptor density receptor map. This clearly demonstrates that the precise distribution of 

5-HT2A is very important for how LSD affects the brain state with or without music-listening. 


	CURBIO14874_annotate.pdf
	Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD
	Introduction
	Results
	Explaining the Influence of Neuromodulation
	Results of Fitting Whole-Brain Neuromodulation Model to Empirical Data

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Anatomical connectivity dataset using diffusion magnetic resonance imaging
	Functional dataset using functional magnetic resonance imaging
	Neurotransmitter dataset using positron emission tomography

	Method Details
	1. Structural connectivity
	Participants and acquisition

	2. Functional connectivity
	Study setting and overview
	Scanning design and content
	Anatomical Scans
	BOLD fMRI Data Acquisition

	3. Neurotransmitter density
	PET and structural MRI


	Quantification and Statistical Analysis
	1. Structural connectivity
	Tractography

	2. Functional connectivity
	Preprocessing
	1) Static Functional Connectivity
	2) Functional Connectivity Dynamics

	3. Parcellation
	4. Whole-Brain Dynamic Mean Field Model
	Simulated BOLD Signal

	5. Serotonergic Modulation

	Data and Software Availability




