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Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here, 
we leveraged the differential outcome in responders and non-responders to psilocybin (10 and 25 mg, 7 days apart) therapy for 
depression—to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used 
large-scale brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment. 
Dynamic sensitivity analysis of systematic perturbation of these models enabled us to identify specific brain regions implicated in a 
transition from a depressive brain state to a healthy one. Binarizing the sample into treatment responders (>50% reduction in depres
sive symptoms) versus non-responders enabled us to identify a subset of regions implicated in this change. Interestingly, these regions 
correlate with in vivo density maps of serotonin receptors 5-hydroxytryptamine 2a and 5-hydroxytryptamine 1a, which psilocin, the 
active metabolite of psilocybin, has an appreciable affinity for, and where it acts as a full-to-partial agonist. Serotonergic transmission 
has long been associated with depression, and our findings provide causal mechanistic evidence for the role of brain regions in the 
recovery from depression via psilocybin.
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Introduction
Behavioural differences between healthy and depressed indi
viduals can sometimes be conspicuous, but identifying causal 
contributions from brain dynamics is more challenging. 
Discrete global brain states, such as those that pertain to 
sleep, healthy waking consciousness and the psychedelic 
state, have their own characteristic spatio-temporal dynam
ics, involving large-scale spatial communities temporally 
evolving in transient arrangements.1-4 With recent advance
ments in non-invasive neuroimaging techniques, it has be
come possible to describe complex spatio-temporal 
dynamics in terms of their spatial and temporal information. 
Still, one of the challenges for systems neuroscience is to 
understand what the most appropriate description of such 

dynamics is and how transition from one state to another 
is made possible.

A common method for characterizing global brain func
tion involves assessing how activity is temporally correlated 
across spatially separate brain areas over an entire recording 
period, defining static and state-specific ‘functional 
connectomes’.5-7 However, the last decade has brought clear 
evidence that finer-grained, more dynamic analysis of brain 
states can deepen our understanding of their properties and 
relationship to behavioural states.8-10 There is a growing tax
onomy of approaches to characterize the dynamics of func
tional interactions,11-13 from data-driven heuristic clustering 
methods across time,8-10,14 dynamical systems-informed 
phase-locking approaches,15-17 hidden Markov models18,19

to spatio-temporal networks.20,21
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From a clinical perspective, major depressive disorder 
(MDD) lends itself ideal for the dynamic analysis as its symp
tomatology is often defined by ruminative states with self- 
critical and inflexible periods of thinking. Such behaviour 
has been linked to the abnormal spatio-temporal organiza
tion of resting state activity.22 Converging findings have 
found the overactivation of default mode network (DMN) 
and hypoconnectivity in the control executive network in 
MDD.23-25 This is consistent with the triple-network model 
whereby depressive states promote the inward and self- 
referential experience at the expense of the interactions and 
attention towards the external environment.24,26 In add
ition, the MDD brain state has been found to reflect greater 
synchronization and temporal stability of overall brain activ
ity compared to healthy participants.27

Efforts and methods are advancing for understanding re
sponse to neuropharmacological interventions for depression. 
Understanding the therapeutic actions of interventions prom
ise not only to shed light onto the mechanistic relationship be
tween various brain states implicated in health and pathology 
but also to provide inspiration for the development of new, 
improved interventions. However, there are considerable 
practical and ethical challenges for answering mechanistic 
questions in humans, elevating the use of animal models 
(with sometimes questionable translational validity) or small 
clinically relevant populations.28,29 One potential advance in 
this direction is the use of large-scale brain modelling—as a 
tool for understanding pathological changes in neuropsychi
atric disorders, and, potentially, for clinical diagnosis and pre
diction.4 We are mindful, however, that the predictive power 
of any model depends on how well it can describe and predict 
experimental data to which it is fitted.30-33

The present paper focuses on large-scale brain network 
models where region-specific stimulation or excitation can 
be tested in silico and used to describe and predict 
empirical-informed target states1—such as the global brain 
state found in people with intractable depression. These 
models link regional dynamics with the neuroanatomical 
structure of the brain to describe the spatio-temporal activity 
of functional data.34 This approach bypasses the ethical con
strains of human or non-human animal experimental set
tings, enabling many types of stimulation to be tested, in 
order to evaluate the role of regions and their excitation on 
transit between states—with relevance to empirical phenom
ena of interest. The validity of this strategy has previously 
been demonstrated in the context of sleep and awake states.1

Here, we build on this notion of dynamic sensitivity ana
lysis to gain insight into the response to psilocybin therapy 
for treatment-resistant depression. We define brain states 
in terms of spatial subdivisions and their probability of oc
currence across time, characterized as probabilistic metasta
ble substates (PMSs). These recurrent metastable substates 
can be characterized by their probability of occurrence. 
Beyond the quantitative description of brain states, we 
wish to understand which brain regions play a prominent 
role in the recovery from depression after treatment with 
psilocybin.35

Using data from a trial of psilocybin therapy for 
treatment-resistant depression, the sample was binarized 
into ‘responders’ and ‘non-responders’ to psilocybin ther
apy. Functional MRI (fMRI) data were collected before 
and 1 day after the second of two psilocybin therapy dosing 
sessions. Using parameters from the empirical data, mod
elled brain states—and stimulation parameters therein, 
could then be used to predict treatment response, defined 
as a >50% reduction in symptom severity from baseline— 
determined at a key 5-week post-treatment end-point.36

Psychedelic medicine has shown a promising avenue for 
treating depression.37 For depression treatment, one current 
hypothesis is that, via a psychedelic drug × psychological 
intervention combination, there is an increase in global 
brain flexibility, translating into a window of opportunity 
for breaking free of negative cognitive biases and associated 
ruminations.38 Indeed, the current research on the 
acute effects of psychedelic drugs suggests an increase in 
the repertoire of brain activity substates.39-41 From a neuro
pharmacological perspective, psilocybin—an active com
pound in magic mushrooms—binds with high affinity to 
the serotonergic 5-hydrotryptamine 2a (5HT2a) receptors 
but other serotonergic receptors are also implicated.42,43

Psilocybin acts as an agonist resulting in higher neuronal ex
citability, modulating the excitatory–inhibitory balance (in 
favour of excitation) in the cortical brain regions with 
more 5HT2a receptors.44 Recently, a large-scale brain com
putational study focusing on the human brain action of lyser
gic acid diethylamide—which has a similar pharmacology to 
psilocybin/psilocin—demonstrated, for the first time, the 
causal impact of 5HT2a agonism-induced excitation on glo
bal brain dynamics.45

Here, in empirical fMRI data, we identified recurrent 
brain substates in terms of the PMS space across all the sub
jects in the pre- and post-treatment conditions. Furthermore, 
we use a computational large-scale brain model—where each 
brain area is represented by a Hopf bifurcation model46—to 
simulate the brain network dynamics in patients before the 
treatment. Through dynamic sensitivity analysis, we were 
able to identify brain regions responsible for treatment re
sponse at a key 5-week end-point.1,47 A priori, we hypothe
sized that regions permitting transition to a healthy brain 
state (as predicted by the 5-week end-point) would relate 
to the distribution of the 5HT2a and 5-hydrotryptamine 1a 
(5HT1a) receptors in the human brain, as determined by 
prior in vivo PET mapping.48

Materials and methods
Experimental data
Functional MRI
We carried out the analysis on previously published data set 
of patients with treatment-resistant depression undergoing 
treatment with psilocybin at Imperial College London.36

In brief, we investigated 15 patients (without excessive 
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movement and other artefacts from the original 19 patients) 
who were diagnosed with treatment-resistant major depres
sion. The MRI scanning sessions were completed pre- 
treatment with psilocybin and 1-day post-treatment with 
the treatment consisting of two oral doses of psilocybin (10 
and 25 mg, 7 days apart). The patients were split into re
sponders and non-responders to the treatment based on the 
Quick Inventory of Depressive Symptomatology (QIDS) at 
5 weeks post-treatment with 6 out of the 15 patients meeting 
criteria for response.49

Structural connectivity
In this study, white matter (structural) connectivity of 90 
automated anatomical atlas brain areas from a previously 
obtained data set was used for the large-scale brain network 
model. In brief, the group consisted of 16 healthy young 
adults (5 females, mean SD age: 24.7 ± 2.54). Diffusion ten
sor imaging was applied following the methodology de
scribed in Cabral et al.50 Undirected structural connectivity 
(SC) Cnp was obtained were n and p are brain areas and 
the connectivity weights are defined as the proportion of 
sampled fibres in all voxels in region n that reach any voxel 
in region p. Finally, the individual structural connectomes 
were averaged across the 16 subjects to obtain a group-based 
template.

Probabilistic metastable substates
Firstly, we calculated the instantaneous phased relationship 
between individual brain regions by expressing the de
meaned regional fMRI signal x(t) as an analytical signal, 
i.e. in terms of its time-varying phase θ(t) and amplitude 
A(t) as x(t) = A(t) ∗ cos(θ(t)).51 We excluded the first and 
last three timepoints to account for the boundary artefacts 
introduced by the Hilbert transform. Hence, for every time
point t and pair of brain regions n and m, we obtain the phase 
coherence matrix dPC as follows:

dPC(n, m, t) = cos(θ(n, t) − θ(m, t)). (1) 

By decomposing the signal in this way, we can look at when 
the brain regions n and m are aligned with similar angles, 
cos (0) = 1, orthogonal to each other, cos (π/2) = 0 , and 
anti-aligned, cos (π) = −1. As the phase coherence is a meas
ure of undirected connectivity, the phase coherence matrix 
dPC is symmetric and all the meaningful information is cap
tured in the upper triangular matrix.

For further analysis, we used only the 1xN leading eigen
vector V1(t) of the dPC matrix as described in the Leading 
Eigenvector Dynamics Analysis (LEiDA).15 In detail, at every 
timepoint t of the dPC(t), we performed the eigendecomposi
tion taking the first (most dominant) eigenvector to describe 
the dPC(t) pattern. The dPC(t) is decomposed as 
dPC(t) = V(t)D(t)V−1(t), where D is the diagonal matrix car
rying the real-valued eigenvalues and V1(t) and V−1

1 (t) are the 
left and right corresponding orthogonal eigenvectors, re
spectively. The dominant connectivity pattern can be simply 

reconstructed by the following matrix multiplication: 
V(t)V−1(t).

The next step was introduced to find recurrent phase- 
locking substates in the dominant connectivity patterns 
varying in time. To that end, we clustered all the leading ei
genvectors obtained from all the fMRI scans obtained from 
both responders and non-responders, thus achieving com
mon phase-locking substates for both groups. For the clus
tering, we used the unsupervised k-means algorithm, with 
varying cluster numbers k from 2 to 10 clusters. The algo
rithm was run in an n-dimensional space where n = 90 (num
ber of automated anatomical atlas brain regions) with 
condition × subject × timepoints number of observations. 
For each run, we randomly initialized the algorithm 20 times 
to ensure stability in the clustering. Again, by computing the 
matrix multiplication of the 1xN cluster centroids Vcα as 
Vcα(t)VT

cα(t), we obtain the dominant connectivity pattern 
of each cluster. In the current analysis, we considered the 
cluster solution k = 3 as an optimal choice between the qual
ity measures—Dunns, Davies–Bouldin and silhouette score, 
and Davies (Supplementary Fig. 2), and the maximizing of 
the statistical significance between patient groups (P-values).

After calculating the phase-locking states, we defined the 
probability of occurrence of the individual substates by sim
ply dividing their occurrence in each recording session by 
the total number of timepoints recorded (same for all 
recordings).

Large-scale brain computational model
In order to simulate the ultra-slow fluctuations in fMRI sig
nal detected during rest, we used the Landau–Stuart oscilla
tor canonical model, describing the transition from a noisy to 
an oscillatory dynamics.52 The so-called supercritical Hopf 
bifurcation model was used locally at every brain region 
(node) to emulate the local dynamics.1,46 To achieve a 
large-scale brain-level description, the individual Hopf mod
els were coupled in a SC network, describing the large-scale 
white matter map of the human brain.46,53 The emerging and 
complex interactions in the large-scale brain network of 
coupled Hopf models have been shown to describe many as
pects known from experimental recordings in MEG54 and 
fMRI.1,46,47,55,56

Formally, the normal form of the supercritical Hopf bifur
cation model for a single uncoupled region of interest (n) in 
Cartesian coordinates is described by the following set of 
coupled equations:

dxn

dt
= (an − x2

n − y2
n)xn − ωnyn + βηn(t), (2) 

dyn

dt
= (an − x2

n − y2
n)yn + ωnxn + βηn(t), (3) 

with βηn(t) being the Gaussian noise with SD of β = 0.02. The 
bifurcation parameter a positions the system at the supercrit
ical bifurcation point when a = 0, noise activity governed by 
βηn(t) in regime when a < 0 and stable limit cycle with oscil
latory behaviour of frequency defined by fn = ωn/2π when 
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a > 0. The values of the intrinsic frequency ω were calculated 
from the experimental fMRI signals in the 0.04 − 0.07 Hz 
band by taking the peak frequency of the Gaussian- 
smoothed power spectrum of each brain area.

To describe the coupled large-scale brain computational 
model, we introduced the coupling term (modelled as the 
common difference coupling, i.e. describing the linear term 
of a general coupling function) between the individual nodes 
weighted by the corresponding values of the SC matrix. To 
be noted, we do not consider the next non-linear coupling 
term following Taylor expansion of the full coupling, in 
case the linear coupling is non-existent.57,58 Equations (2) 
and (3) can be hence expanded as follows:

dxn

dt
= (an − x2

n − y2
n)xn − ωnyn + G

􏽘N

p=1

Cnp(xp − xn)

+ βηn(t),

(4) 

dyn

dt
= (an − x2

n − y2
n)yn + ωnxn + G

􏽘N

p=1

Cnp(yp − yn)

+ βηn(t),

(5) 

where Cnp is the SC weight between node n and p, and G is 
the global coupling weight with equal contribution between 
all the nodal pairs. The SC matrix was rescaled to have the 
mean value 〈C〉 = 0.2 in order to be consistent with previous 
literature’s range of parameters.1,46 The simulated signal is 
described by the xn equation for every node n. The variables 
G and a are the control parameters used for the model fitting 
to the experimental data and the stimulation protocol, 
respectively.1,46

Objective function
In order to validate the simulated signal, different realiza
tions of the experimental data can be used.30 The most stand
ard approach is comparison of the simulated data with 
grand-averaged static functional connectivity as computed 
by the Pearson correlation34,59 or metastability defined as 
the SD of the Kuramoto order parameter (Supplementary 
Fig. 4—Metastability). To account for the temporally vary
ing nature of the blood oxygen level–dependent signal, re
cent literature has focused on the comparison between the 
simulated and empirical functional connectivity dynamics 
(FCD) spectrums (quantified by the Kolmogorov–Smirnov 
distance), i.e. the distributions of the cosine distance between 
the consecutive timepoints as described by the leading eigen
vector45,46 (Supplementary Fig. 4—Functional Connectivity 
Dynamics). As alluded to in the previous section, the fMRI 
signals organize into spatially meaningful phase-locking 
states. Here, we compare the simulated data to the 
probabilities of occurrence of the phase-locking states 
found in the experimental recordings.1 We used the 
symmetrized Kullback–Leibler divergence (KL divergence) 
of the simulated and empirical probabilities of occurrence 

as follows:

KL(Pemp, Psim)

= 0.5
􏽘

i

Pemp(i) ln
Pemp(i)
Psim(i)

􏼠 􏼡

+
􏽘

i

Psim(i) ln
Psim(i)
Pemp(i)

􏼠 􏼡􏼠 􏼡

,

(6) 

with Pemp and Psim being the empirical and simulated prob
abilities of occurrence of the same phase-locking states, 
respectively.

Statistical analysis
We use non-parametric permutation tests for the experimen
tal analysis with 1000 permutations. For the receptor ana
lysis, we used standard Pearson’s correlation. Both tests 
were implemented in MATLAB.

Results
In summary, a quantitative characterization of the spatio- 
temporal dynamics recorded with fMRI was obtained using 
LEiDA, resulting in the definition of PMSs (Fig. 1A), whose 
probability of occurrence was compared across conditions 
(i.e. within-subject design—therefore, before versus after 
treatment). We then constructed two large-scale brain models 
representative of the pre-treatment brains to psilocybin ther
apy. This was done by fitting their PMS descriptions to those 
obtained from the experimental data (Fig. 1B). Finally, a dy
namic sensitivity analysis was implemented to both responder 
and non-responder pre-treatment models to identify the brain 
regions that permit a transition to the healthy PMS [described 
by responders’ (as predicted by the 5-week end-point) 1-day 
post-treatment brains; Fig. 1C and D].

As described in the ‘Materials and methods’ section, we 
computed the PMS pre- and post-treatment with psilocybin 
(where ‘post’ = 1 day post psilocybin dosing session two), 
for both responders and non-responders (determined 5 
weeks hence). Here, we focused on a three-substate 
solution—the lowest k-level with statistically significant 
differences between the two groups as well as optimal quality 
measures across clustering solutions (Supplementary Fig. 2). 
When contrasting responders versus non-responders, the oc
currence of substate 3 was significantly different pre- versus 
post-treatment (P = 0.0258, signed rank-sum test), as well as 
in the post-treatment data alone (P = 0.0141, rank-sum test; 
Fig. 2A). Furthermore, we also computed the global 
brain connectivity, metastability and FCD measures 
(Supplementary Fig. 1). These results clearly indicated the 
necessity of considering both spatial and temporal dimen
sions to differentiate between conditions as global brain con
nectivity, synchrony and metastability show non-significant 
results. Conversely, the FCD measure showed significant 
differences in the temporal similarities of spatial patterns 
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between pre- and post-treatment responders (P = 0.0163, 
signed rank-sum permutation test) and pre- and post- 
treatment non-responders with post-treatment responders, 
respectively (P = 0.0183 and P = 0.0273, rank-sum permu
tation test), further supporting the use of spatio-temporal 
measures to capture the alterations in large-scale brain dy
namics across conditions.

To obtain large-scale brain computational models repre
sentative of the two groups of patients (responders and 
non-responders before treatment), we first defined a general
ized brain network model, where each of 90 cortical and sub
cortical brain regions (defined using automated anatomical 

labelling60) was described by a Stuart-Landau oscillator 
(see the ‘Materials and methods’ section), and regions were 
coupled according to realistic SC obtained from diffusion 
MRI.

To adjust the model to each group of patients, first, the in
trinsic frequency of each brain region was set to the peak fre
quency in fMRI signals averaged across patients in the same 
group (Supplementary Fig. 3). Subsequently, the global 
coupling parameter, G, was tuned to optimize each model 
to its appropriate working point. This was achieved by min
imizing the divergence between the experimental and simu
lated PMS spaces (see Fig. 2B). In Supplementary Fig. 4, 

A B

D C

Figure 1 Study overview. (A) Experimental analysis. PMSs were computed for each condition using LEiDA. Regional fMRI time series were first 
converted to analytical signal, followed by computation of the leading eigenvector of the phase coherence matrix at every timepoint. An 
unsupervised k-means algorithm was deployed to cluster the eigenvectors into a three-substate solution. The PMS is defined as the probability 
distribution of substates, obtained for each individual scan and averaged within each condition. S1, substate 1; S2, substate 2; S3, substate 3. 
(B) Model fitting. Large-scale brain model parameters were optimized to fit the PMS before treatment separately for responders and 
non-responders. (C) Dynamic sensitivity analysis. In silico bilateral perturbations were performed to find the optimal protocol to transition to the 
PMS characteristic of a healthy brain state [described by responders’ (as predicted by the 5-week QIDS end-point) 1 day post-treatment brains]. 
(D) Dynamic sensitivity evaluation. Perturbations are applied separately in each pair of bilateral brain regions by varying the intensity of oscillations 
as defined by the bifurcation parameter a.
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we report optimization curves for other observables such as 
the static FC, metastability and FCD. For the responders and 
non-responders before treatment, we found G = 0.185 (KL 
divergence = 0.0064) and G = 0.165 (KL divergence =  
0.0187), respectively, to minimize the difference. Figure 2C
shows, on the left, the experimental results for both groups 

before treatment; in the middle, the optimal simulated fits 
for both groups; and on the right, the experimental results 
after treatment (with the results of responders after treat
ment serving as the target PMS for rebalancing). These find
ings clearly demonstrate the large-scale model’s ability to fit 
the spatio-temporal dynamics, as described by the PMS 

A

C

B

Figure 2 (A) Experimental analysis. Probability of occurrence (or fractional occupancy) of each metastable substate detected with LEiDA for 
the three-substate clustering solution. Significant differences were observed in substate 3 between responders before and after treatment (P =  
0.0258, signed rank-sum permutation test, star for significance, number of responders 6 and number of non-responders 9, individual subjects 
plotted for the experimental analysis, A); responders and non-responders after treatment (P = 0.0141, rank-sum permutation test, star for 
significance, number of responders 6 and number of non-responders 9, individual subjects plotted for the experimental analysis, A); and no 
significant differences were found between responders and non-responders before treatment. (B) Model fitting of the responder and 
non-responder models as a function of the global coupling parameter G, with optimal fits at G = 0.185 (KL divergence = 0.0064) and G = 0.165 (KL 
divergence = 0.0187), respectively. We report the median across subjects in each group with interquartile range (IQL). (C) Experimental and 
simulated PMS. Experimental PMS for responders and non-responders before treatment (left), their simulated counterparts at optimal G (middle) 
and experimental PMS for responders and non-responders after treatment (right).

Brain dynamics in psilocybin for depression                                                                     BRAIN COMMUNICATIONS 2024: Page 7 of 13 | 7

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/6/2/fcae049/7608816 by guest on 21 O

ctober 2024



space, of the studied groups of responders and non- 
responders before the treatment.

Subsequently, we considered dynamic sensitivity analysis 
to determine the optimal perturbation strategies to rebalance 
the PMS distribution to the healthy state (as defined by the 
PMS space of responders after 1 day after treatment). 
Figure 3 illustrates the dynamic sensitivity analysis, whereby 
the bifurcation parameter a is used to change the nodal dy
namics in terms of its response to added noise, ranging 
from a more noise-driven regime (the more a is negative) to 
an oscillatory regime (with larger amplitude, the more a is 
positive). We focused on homological nodal perturbation 
of the large-scale brain model, meaning that bilateral regions 
were perturbed equally, resulting in 45 pairs of regions per
turbed at gradually varying values of a. Figure 3A shows the 
dynamic sensitivity analysis of driving a transition to the 
healthy state for models of both responders and non- 
responders before treatment. Again, an average of the KL 
divergence between either the perturbed pre-treatment re
sponder or non-responder models and the healthy PMS 
space was shown. In the noise-driven regime (a < 0), a deteri
oration of the fit was observed for both groups, while in the 
oscillatory regime (a > 0), an initial improvement across all 
45 runs was depicted, before subsequent deterioration 

away from the optimal fit for both groups. Conversely, 
when replacing the target healthy state by the depressive 
state (i.e. by comparing with the average PMS in non- 
responders after treatment), we found that the KL divergence 
was minimal without perturbation (i.e. keeping a = 0), show
ing a worse fit for both groups when brain areas became 
more oscillatory and no effect of the noisy perturbation 
(Fig. 3B). This analysis demonstrates the optimal response 
for the amelioration of brain dynamics towards the optimal 
brain dynamics, as described by the PMS space of post- 
treatment responders, to be in the oscillation-driven regime 
(a > 0) for both responders and non-responders.

To evaluate which regions permitted transition to a 
healthy state, we first defined the optimal perturbation 
strength as the minimum of the averaged KL divergence 
(across the 45 runs) of the responder group to the treatment. 
This stimulation intensity was found at a = 0.07. Then, we 
inspected the difference between the responders and non- 
responders at that given value of a to assess what nodal per
turbations were permitting the transition to the healthy state 
in responders but not in non-responders (Fig. 4).

Figure 4A shows the rank-ordered regional differences in KL 
divergence between perturbations of the responder and non- 
responder models before treatment at a stimulation intensity 

A B

Figure 3 Evaluation of dynamic sensitivity analysis. (A) Perturbation to induce a transition to a healthy state. Each homological pair of brain 
regions was perturbed by varying the bifurcation parameter a, which modulates the intrinsic oscillatory behaviour of the dynamical units. The 
more a is positive, the larger the amplitude of intrinsic oscillations, whereas for negative a, the units decay to a fixed point equilibrium and the local 
dynamics is dominated by noise. The performance of the perturbations is evaluated by computing the KL divergence between the simulated PMS 
and the empirical PMS from patients who recovered after treatment with psilocybin. Optimal intensity of a = 0.07 was achieved for the responder 
group (highlighted rectangles). (B) Perturbation to induce a transition to a depressive state. A transition to the depressive state showed worse or 
no effect at varying values of the bifurcation parameter a. This is expected since the models were adjusted to patients in the depressive state 
before treatment.

8 | BRAIN COMMUNICATIONS 2024: Page 8 of 13                                                                                                            J. Vohryzek et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/6/2/fcae049/7608816 by guest on 21 O

ctober 2024



of a = 0.07. We highlighted the regions with the largest KL 
divergence working in responders but not non-responders to 
promote a transition to the healthy state. These regions are 
the temporal superior pole, rolandic operculum, fusiform 
gyrus, supplementary motor area, parietal inferior gyrus, 
angular gyrus, supramarginal gyrus, frontal inferior gyrus 
(opercular), frontal middle gyrus (orbital) and parahippocam
pal gyrus. Figure 4B shows the cortical rendering of these 
differences. In summary, these regions are implicated in 
transition away from ‘depressed brain’ pathology and towards 
the ‘healthy brain’ configurations of treatment responders.

Correlation with serotonin receptor 
maps
Given the unique and known neuropharmacology of psyche
delics whereby psilocybin—the active component of magic 
mushrooms—binds with high affinity to the serotonergic 
receptors (mainly the 5-HT2a) and in effect increases neural 
activity, we assessed whether the regions working in re
sponders but not non-responders overlapped with the 
5-HT density maps derived from PET imaging data previ
ously obtained by an independent research group.48

Figure 5A and B show the correlation between the 5-HT2a 

and 5-HT1a receptor density maps and regional differences 

in KL divergence between perturbations of the responder 
and non-responder models before treatment at a stimula
tion intensity of a = 0.07 (same as in Fig. 4; Spearman’s 
ρ = 0.227, P = 0.032, and Spearman’s ρ = 0.284, P =  
0.007, respectively). Figure 5C shows non-significant corre
lations to other 5-HT components—namely the 5-HT2b 

(Spearman’s ρ = 0.064, P = 0.055) and 5-HT4 receptors 
(Spearman’s ρ = 0.055, P = 0.607) and the 5-HT transport
er (5-HTT; Spearman’s ρ = −0.172, P = 0.106). This ana
lysis shows that the ability to force transition towards the 
optimal spatio-temporal dynamics of a given region corre
lates with density of 5HT2a and 5HT1a neuroreceptors of 
that region.

Discussion
In this work, we employed a large-scale brain modelling ap
proach to evaluate potential brain change causes of response 
to psilocybin therapy for treatment-resistant depression. 
Using a novel combination of empirical data and in silico 
modelling, systematic perturbations to brain regions mod
elled in silico revealed a subset of regions implicated in tran
sition away from ‘depressed brain’ pathology and towards 
the ‘healthy brain’ configurations of treatment responders. 
Notably, these regions matched those with the highest 

A

B

Figure 4 Subset of regions working in responders but not in non-responders. (A) Rank-ordered absolute difference of KL divergence 
between perturbations of the responder and non-responder models before treatment at a stimulation intensity of a = 0.07. Inset brain rendering 
of the 10 brain regions with the highest difference: the temporal superior pole, rolandic operculum, fusiform gyrus, supplementary motor area, 
parietal inferior gyrus, angular gyrus, supramarginal gyrus, frontal inferior gyrus (opercular), frontal middle gyrus (orbital) and parahippocampal 
gyrus. (B) Cortical rendering and flat maps showing the distribution of all KL divergence differences.

Brain dynamics in psilocybin for depression                                                                     BRAIN COMMUNICATIONS 2024: Page 9 of 13 | 9

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/6/2/fcae049/7608816 by guest on 21 O

ctober 2024



density of 5HT2a and 5HT1a neuroreceptors. This relation
ship is plausible given that psilocin (psilocybin’s active me
tabolite) is known to have an appreciable-to-high affinity 
for the 5-HT1a and 5-HT2a receptors, respectively, where it 
acts as an agonist, in the case of the 5-HT2a, potentially 
stimulating plasticity-related signalling cascades relevant to 
an antidepressant action.61,62

Another complementary perspective of the findings, which 
show the correlation between 5-HT2a and 5-HT1a serotoner
gic receptors and regions with difference in the intervention 
between the groups, is that of the overactivation of DMN in 
depression both in terms of its connectivity profile and tem
poral characterization.22-24,63 It has been shown that seroto
nergic raphe nuclei have direct anatomical projections to the 
regions of DMN and 5HT2 receptors expressed in DMN re
gions,64 and it is thus possible that the psychedelic action en
ables modulation of the DMN via serotonergic pathways in 
responders but not non-responders.

A summary of complex spatio-temporal dynamics, in 
terms of brain substates and their transitions, has drawn a 
lot of attention in systems neuroscience due to its utility to 
evaluate the impact of pharmacological and electromagnetic 
interventions for treating brain and behavioural disorders. 

Brain substates have been characterized in different ways, 
by minimal energy65 as attractor landscapes16,34 and, more 
heuristically, through sliding window analysis and unsuper
vised clustering.8,9 However, it has been challenging to find a 
model that is sufficiently simple and yet accurate to account 
for temporally and spatially complex and non-stationary 
data sets. Here, PMSs are built on a description of the data 
in terms of a probabilistic ‘cloud’ in substate space and as 
such can be extended to different neuroimaging modalities 
with higher temporal resolution, such as EEG and MEG, 
or potentially to more fine-grained spatial resolutions.1,11

Cutting-edge non-invasive brain stimulation techniques, 
such as transcranial magnetic stimulation and direct electric
al stimulation, and new neuropsychopharmacological drugs 
for the treatment of psychiatric disorders have heralded a 
new era of localized and system-wide brain perturbations 
as medical interventions. For example, transcranial magnetic 
stimulation has been considered for the treatment of many 
psychiatric disorders, such as depression, schizophrenia 
and addiction,66 and classic psychedelic (drug) therapy, 
which, in part, targets a specific neuroreceptor (i.e. principal
ly the 5-HT1a receptor), is showing efficacy in the treatment 
of a broad range of conditions such as depressive, anxiety 

A

C

B

Figure 5 Ability to promote a transition relates to density of specific serotonin receptors. For each pair of homological brain regions, 
the ability to promote a transition is plotted against the receptor map densities of (A) 5-HT2a (Spearman’s correlation ρ = 0.227, P = 0.032) and 
(B) 5HT1a ( ρ = 0.284, P = 0.007). (C) In contrast, the other 5-HT receptors with non-significant results are 5-HT2b ( ρ = 0.064, P = 0.055) and 
5-HT4 ( ρ = 0.055, P = 0.607), as well as the serotonin transporter 5-HTT ( ρ = −0.172, P = 0.106).
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and addiction disorders.38 However, it seems highly likely 
that the mechanistic action of these interventions lies poten
tially well downstream of their initial action, and this action 
may not be straightforward.67 For example, how direct elec
trical stimulation–induced signal propagates within neuron
al microcircuits remains unclear and often paradoxical68 and 
motivates theoretical neuroscience studies and in silico per
turbation protocols. In this perspective, our study attempted 
to understand how the psychedelic-induced perturbation im
pacts regional activity that alters the brain-wide dynamics, 
thus potentially bridging the initial (as done experimentally) 
and downstream actions (as done in silico) of such 
intervention.

Beyond in silico perturbations, the exhaustive stimulation 
protocol can also be used as a dynamic sensitivity analysis 
tool from the complex systems perspective. Traditionally, 
statistical differences in measures summarizing spatio- 
temporal dynamics are obtained using signal detection the
ory. Such approaches can be enhanced by considering 
large-scale brain models and their structural differences be
tween conditions, for example as described by the global 
coupling (G) parameter. Moreover, rather than describing 
and assessing expressions of spatio-temporal dynamics, an 
exhaustive protocol allows a shift of focus onto transitions 
to a target state, and this can be used to identify differences 
between groups, such as treatment responders versus non- 
responders, as we have done here.

Forcing transitions in large-scale brain networks has also 
been investigated through the prism of control network the
ory. In such scenarios, control strategies are deployed to 
navigate complex systems from a source (initial) state to a 
target (final) state.69 This approach has obtained a lot of at
tention due to its wide-ranging engineering applicability in 
technological, social and cyberphysical systems across vari
ous experimental scenarios.70,71 However, the conceptual 
understanding of controlling neuronal signals from source 
to target might be problematic as the brain operates in 
self-sustained and non-equilibrium state, and the notion of 
well-defined pathway between them might be ill posed.72

On the contrary, the approach considered in this work de
scribes spatio-temporal dynamics in terms of PMSs and, 
through systematic perturbation, rebalances the spatio- 
temporal dynamics between two PMS spaces. Through this 
approach, the brain is rebalanced to its healthy working 
point, without specific instructions of what the relevant 
pathway might be.

To obtain a PMS approximation of the brain substate of 
interest, several methodological choices are made, which in
evitably introduce several caveats. First, a regional parcella
tion must be chosen, which might introduce artificial spatial 
boundaries especially when dealing with dynamics. 
Secondly, the choice of clustering algorithm defines the 
type of substates that can be obtained. Here, we use the un
supervised learning algorithm k-means clustering, which has 
been shown to adequately represent functionally meaningful 
brain substates.16 However, alternative algorithms could be 
used for this purpose (e.g. k-medoids). Related to the 

experimental data, the design is an uncontrolled open-label 
feasibility pilot study, and as such has no placebo group 
and suffers from small sample size. In this context, it is rele
vant to consider the current study as exploratory. Hence, fu
ture replication studies are warranted to ensure robustness of 
the findings. Moreover, the healthy state is defined here in 
terms of the 1-day post-treatment scan but the responders/ 
non-responders’ assessment is done 5 weeks after. Lastly, 
the large-scale brain models constructed are based on group 
approximations of the functional brain information and SC 
group template. For clinical relevance, further research will 
be needed to create individual-based large-scale brain models 
that might allow for future in silico–assisted personalized 
psychiatry.73
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online.
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